In FrenchNovember 6th: Groupe de travail BioPuces, INRA de Toulouse, Toulouse, Compte-rendu bibliographique sur les réseaux biologiques.
In FrenchOctober 19th: Séminaire de probabilités et statistique de Montpellier, Université Montpellier 2, Discrimination et régression non paramétriques pour des dérivées : un résultat de consistance pour des données fonctionnelles discrétisées.
Lors de l'analyse de données fonctionnelles, il est bien connu que les
problèmes de discrimination et de régression sont parfois mieux résolus si
on utilise les dérivées plutôt que les fonctions observées. Nous nous
proposons de présenter un résultat qui prouve que, dans certaines conditions,
l'utilisation des dérivées permet également d'approcher asymptotiquement
l'erreur optimale, pour des méthodes de discrimination ou de régression très
générales.
In FrenchOctober 9th: Groupe de travail BioPuces, INRA de Toulouse, Toulouse, Compte-rendu bibliographique sur les réseaux biologiques.
In FrenchSeptember 30th: Journée HélioSPIR 2009, École d’ingénieurs de Purpan, Toulouse, Application de l’analyse des données fonctionnelles à l’identification de blé dur fusarié, moucheté et mitadiné.
June 5th: Groupe de travail BioPuces, INRA de Toulouse, Toulouse, Representation of metabolomic data with wavelets.
April 29th: Department Seminar, Toulouse School of Economics, Classification and regression based on derivatives: a consistency result for sampled functions.
In some applications, curve classifiers achieve better performances if they
work on the derivatives of order m of their inputs. Although the use of
derivatives is a common practice, no theoretical result proves that this
approach is relevant. More precisely, this paper proves that the use of the
derivatives instead of the function itself does not lead to a dramatic loss
of information and that it has no consequence for the convergence of the
method to the Bayes function. To that aim, we rely on a smoothing spline
based approach that gives a strong theoretical background to the common
practice of using derivatives in the realistic case where the observed
functions are only known by their values on a discrete sampling grid. The
consistency of a very general derivative based classifier or regression
scheme is proved.
In FrenchApril 24th: Groupe de travail BioPuces, INRA de Toulouse, Toulouse, Fouille de données sur des graphes : Introduction.
Finding meaningful communities in social network, or, to use a more classical
vocabulary, clustering a graph, is a very important problem in social network
analysis. For very large graphs, a fast clustering algorithm provides a coarse
graining of the graph and can be considered a preprocessing phase before time
consuming algorithms. For small to medium size graphs, communities can be
analyzed manually (or at least semi-automatically) by specialists in order to
figure out the global organization of the underlying social network.
This talk focuses on the second case, when the goal is to display to an end
user a visual representation of a social network. The main idea of our work
is to find communities that can be displayed easily on a plane. Our method
is based on the self-organizing map paradigm.
We first recall briefly some extension of the self-organizing map to kernel
and dissimilarity data. Then we give examples of kernels and dissimilarities
that can be constructed to compare the nodes of a graph using its link
structure. We show what type of results can be obtained in this framework on
real world graphs and outline advantages and drawbacks of the method.