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Outline

@ Co-expression analysis introduction

© Unsupervised clustering
o Centroid-based clustering: K-means, HCA

@ Model-based clustering
@ Mixture models for RNA-seq data

© Conclusion / discussion

andrea.rau@jouy.inra.fr 2 /45



Aims for this afternoon

e What is the biological /statistical meaning of co-expression for
RNA-seq?

@ What methods exist for performing co-expression analysis?
@ How to choose the number of clusters present in data?

o Advantages / disadvantages of different approaches: speed, stability,
robustness, interpretability, model selection, ...
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Co-expression analysis introduction

Design of a transcriptomics project

’ Biological question ‘

11

’ Experimental design ‘

1

’ Data acquisition ‘

1

’ Data analysis:‘

Normalization, differential analysis, clustering, networks, ...
47
Validation
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Co-expression analysis introduction
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Co-expression analysis introduction

Gene co-expression is...

@ The simultaneous expression of two or more genes?

@ Groups of co-transcribed genes?

@ Similarity of expression* (correlation, topological overlap, mutual
information, ...)

@ Groups of genes that have similar expression patterns® over a range of
different experiments

2https://en.wiktionary.org/wiki/coexpression
3http://bioinfow.dep.usal.es/coexpression
*http://coxpresdb.jp/overview.shtml

*Yeung et al. (2001)

®Eisen et al. (1998)
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Co-expression analysis introduction

Gene co-expression is...

@ The simultaneous expression of two or more genes?

@ Groups of co-transcribed genes?

@ Similarity of expression* (correlation, topological overlap, mutual
information, ...)

@ Groups of genes that have similar expression patterns® over a range of
different experiments

@ Related to shared regulatory inputs, functional pathways, and
biological process(es)®

2https://en.wiktionary.org/wiki/coexpression
3http://bioinfow.dep.usal.es/coexpression
*http://coxpresdb.jp/overview.shtml

*Yeung et al. (2001)

®Eisen et al. (1998)
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Co-expression analysis introduction

From gene co-expression to gene function prediction

@ Transcriptomic data: main source of 'omic information available for
living organisms
o Microarrays (~1995 - )
o High-throughput sequencing: RNA-seq (~2008 - )

Co-expression (clustering) analysis

o Study patterns of relative gene expression (profiles) across several
conditions

@ = Co-expression is a tool to study genes without known or predicted
function (orphan genes)

@ Exploratory tool to identify expression trends from the data
(# sample classification, identification of differential expression)
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Co-expression analysis introduction

RNA-seq profiles for co-expression
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Co-expression analysis introduction

RNA-seq profiles for co-expression
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Co-expression analysis introduction

RNA-seq profiles for co-expression
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@ Let y;; be the raw count for gene i in sample j, with library size s;

o Profile for gene i: p; = Zy’jyl
e Yi
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Co-expression analysis introduction

RNA-seq profiles for co-expression
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@ Normalized profile for gene i: p;j = Zy#/fj/s
it/
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Unsupervised clustering

Unsupervised clustering

Objective

Define homogeneous and well-separated groups of genes from
transcriptomic data

What does it mean for a pair of genes to be close?
Given this, how do we define groups?
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Unsupervised clustering

Unsupervised clustering

Objective

Define homogeneous and well-separated groups of genes from
transcriptomic data

What does it mean for a pair of genes to be close?
Given this, how do we define groups?

Two broad classes of methods typically used:

@ Centroid-based clustering (K-means and hierarchical clustering)
@ Model-based clustering (mixture models)
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Outline

© Unsupervised clustering
o Centroid-based clustering: K-means, HCA
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Similarity measures
Similarity between genes is defined with a distance:

e Euclidian distance (L2 norm): d?(y;,yir) = > 0_,(vie — yire)?
= Note: sensitive to scaling and differences in average expression
level
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Similarity measures
Similarity between genes is defined with a distance:

e Euclidian distance (L2 norm): d?(y;,yir) = > 0_,(vie — yire)?
= Note: sensitive to scaling and differences in average expression
level

@ Pearson correlation coefficient: dpc(yi,yir) =1 — piir

@ Spearman rank correlation coefficient: as above but replace y;; with
rank of gene i across all samples j

@ Absolute or squared correlation: duc(yi,yir) =1 — |pji | or
dsc(yiyir) =1~ pi

e Mahalanobis distance: dmanalanobis(¥i, Yir) = (¥i — yir /=1 (yi — yir)

o Manhattan distance: dmanhattan(¥i, ¥ir) = Doy |Yie — Yirel
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Inertia measures

Homogeneity of a group is defined with an inertia criterion:

@ Let y; be the centroid of the dataset and y¢, the centroid of group
Ck

n
Inertia = Z d*(yi,yc)
i=1

_ZZd Yi,yc,) +and (Yci Yo)

k=1ieCy
= within-group inertia 4+ between-group inertia
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Unsupervised clustering Centroid-based clustering: K-means, HCA

In practice...

Objective: cluster n genes into K groups,
maximizing the between-group inertia

@ Exhaustive search is impossible

@ Two algorithms are often used

© K-means
@ Hierarchical clustering
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Unsupervised clustering Centroid-based clustering: K-means, HCA

K-means algorithm

Initialization K centroids are chosen ramdomly or by the user
[terative algorithm

@ Assignment Each gene is assigned to a group according to its
distance to the centroids.

@ Calculation of the new centroids

Stopping criterion: when the maximal number of iterations is achived OR
when groups are stable

Properties
@ Rapid and easy
@ Results depend strongly on initialization

@ Number of groups K is fixed a priori

andrea.rau@jouy.inra.fr 14 / 45



Unsupervised clustering Centroid-based clustering: K-means, HCA

K-means illustration
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Animation: http://shabal.in/visuals/kmeans/1.html
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http://shabal.in/visuals/kmeans/1.html

Unsupervised clustering Centroid-based clustering: K-means, HCA

K-means algorithm: Choice of K7

@ Elbow plot of within-sum of squares: examine the percentage of
variance explained as a function of the number of clusters

10000 15000
1 1

5000

Dim 1 Number of clusters

o Gap statistic: estimate change in within-cluster dispersion compared
to that under expected reference null distribution

@ Silhouette statistic: measure of how closely data within a cluster is
matched and how loosely it is matched to neighboring clusters
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Hierarchical clustering analysis (HCA)

Objective Construct embedded partitions of (n,n —1,...,1) groups,
forming a tree-shaped data structure (dendrogram)
Algorithm

o Initialization n groups for n genes

@ At each step:

e Closest genes are clustered

e Calculate distance between this new group and the
remaining genes
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Distances between groups for HCA

Distances between groups

@ Single-linkage clustering:

D(Ck, Cxr) = min min d?(x,x")
x€C x'eCy

o Complete-linkage clustering:

D(Cy, Cyr) = max max d?(x,x")

o Ward distance:
ng Ny

D(Cy, C) = d? K
(Ck, C) (xcprxc,,) X e T e

where ny is the number of genes in group Cx

andrea.rau@jouy.inra.fr
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Unsupervised clustering Centroid-based clustering: K-means, HCA

Distances between groups for HCA

- Simple linkage - Average linkage - Complete linkage
A}
® N x % s
\\ - *
x x x
x X x % x X

Source: http://compbio.pbworks.com/w/page/16252903 /Microarray%20Clustering%20Methods%20and%20Gene%200ntology
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Unsupervised clustering Centroid-based clustering: K-means, HCA

HCA: additional details

Properties:
@ HCA is stable since there is no initialization step

@ K is chosen according to the tree
@ Results strongly depend on the chosen distances
@ Branch lengths are proportional to the percentage of inertia loss = a
long branch indicates that the 2 groups are not homogeneous
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Dim1 Euclidian distance, complete linkage
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Unsupervised clustering

Outline

© Unsupervised clustering

@ Model-based clustering

andrea.rau@jouy.inra.fr

Model-based clustering
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Unsupervised clustering ~ Model-based clustering

Model-based clustering

@ Probabilistic clustering models : data are assumed to come from
distinct subpopulations, each modeled separately

@ Rigourous framework for parameter estimation and model selection

@ Output: each gene assigned a probability of cluster membership

what we observe the model the expected results
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Unsupervised clustering Model-based clustering

Key ingredients of a mixture model

@ Lety =(y1,...,Yn) denote the observations with y; € RP

@ We introduce a latent variable to indicate the group from which each
observation arises:

Z,' NM(n;m,...,wK),
P(Z; = k) = mk

@ Assume that y; are conditionally independent given Z;
@ Model the distribution of y;|Z; using a parametric distribution:

(il Zi = k) ~ (- 0k)

andrea.rau@jouy.inra.fr 23 /45



Unsupervised clustering Model-based clustering

Questions around the mixtures

@ Model: what distribution to use for each component ?
~~ depends on the observed data.

@ Inference: how to estimate the parameters ?
~- usually done with an EM-like algorithm (Dempster et al., 1977)

@ Model selection: how to choose the number of components ?

e A collection of mixtures with a varying number of components is
usually considered

o A penalized criterion is used to select the best model from the
collection
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Unsupervised clustering Model-based clustering

Clustering data into components

Distributions: Conditional probabilities:
i (X
g(x) =mifi(x)+ + maf3(x) Tik;é()g,-)l)

Maximum a posteriori (MAP) rule: Assign genes to the component with
highest conditional probability 7:

T (%) k=1 k = k=3
i=1 65.8 34.2 0.0
=2 0.7 47.8 51.5
=3 0.0 0.0 100
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Unsupervised clustering Model-based clustering

Model selection for mixture models

Asymptotic penalized criteria’

e BIC aims to identify the best model K wrt the global fit of the data
distribution:

BIC(K) = — log P(y|K, fx) + %K log(n)

where v is the # of free parameters and GAK is the MLE of the model
with K clusters
o ICL aims to identify the best model K wrt cluster separation:

ICL(K) = BIC(K) ( szmgﬂk)

i=1 k=1

~+ Select K that minimizes BIC or ICL (but be careful about their sign!)

" Asymptotic: approaching a given value as the number of observations n — oo
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Model selection for mixture models: BIC vs ICL

andrea.rau@jouy.inra.fr

Unsupervised clustering
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Model-based clustering
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27 / 45



Unsupervised clustering Model-based clustering

Model selection for mixture models

Non-asymptotic penalized criteria

Recent work has been done in a non-asymptotic context using the slope
heuristics (Birgé & Massart, 2007):

SH(K) = |Og P(y’Kaé\K) + Iipenshape(K)

@ In large dimensions, linear behavior of % — —Yn(8D)
@ Estimation of slope to calibrate % in a data-driven manner
(Data-Driven Slope Estimation = DDSE), capushe R package

andrea.rau@jouy.inra.fr 28 / 45



Unsupervised clustering Mixture models for RNA-seq data

Outline

© Unsupervised clustering

@ Mixture models for RNA-seq data
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Unsupervised clustering Mixture models for RNA-seq data

Finite mixture models for RNA-seq

Assume data y come from K distinct subpopulations, each modeled
separately:

fF(ylK, Wk) = Hzﬂ'kfk yii 6k)

i=1 k=1

e w=(m,...,mk) are the mixing proportions, where Zszl =1
@ f, are the densities of each of the components

andrea.rau@jouy.inra.fr 30/ 45



Unsupervised clustering Mixture models for RNA-seq data

Finite mixture models for RNA-seq

Assume data y come from K distinct subpopulations, each modeled
separately:

fF(ylK, Wk) = Hzﬂ'kfk yii 6k)

i=1 k=1

e w=(m,...,mk) are the mixing proportions, where Zszl =1
@ f, are the densities of each of the components

e For microarray data, we often assume y;|k ~ MVN( e, i)
@ What about RNA-seq data?
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Unsupervised clustering Mixture models for RNA-seq data

Finite mixture models for RNA-seq data

n K

FyIK, i) = [T D mafilyil6)

i=1 k=1

For RNA-seq data, we must choose the family & parameterization of f(-):

@ Directly model read counts (HTSCluster):

J

yilZi =k ~ H Poisson(y; | ijk)
j=1

@ Apply appropriately chosen data transformation (coseq):

g(yi)|lZi = k ~ MVN(pk, Zk)
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Unsupervised clustering Mixture models for RNA-seq data

Poisson mixture models for RNA-seq (Rau et al., 2015)

J

YilZi = k ~ H Poisson(yj|tijk)
j=1

Question: How to parameterize the mean pj to obtain meaningful
clusters of co-expressed genes?

andrea.rau@jouy.inra.fr 32 /45



Unsupervised clustering Mixture models for RNA-seq data

Poisson mixture models for RNA-seq (Rau et al., 2015)

J
YilZi = k ~ H Poisson(yj|tijk)
j=1

Question: How to parameterize the mean pj to obtain meaningful
clusters of co-expressed genes?

Hijk = WiAjkSj

@ w; : overall expression level of observation i (y;.)
® A = (Aj) : clustering parameters that define the profiles of genes in
cluster k (variation around w;)

@ s; : normalized library size for sample j, where stj =1
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Unsupervised clustering Mixture models for RNA-seq data

Behavior of model selection in practice for RNA-seq
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Unsupervised clustering Mixture models for RNA-seq data

Discussion of PMM for RNA-seq data

Advantages:
@ Directly models counts (no data transformation necessary)
@ Clusters interpreted in terms of profiles around mean expression
© Implemented in HTSCluster package on CRAN (v1.0.8)

© Promising results on real data...
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Unsupervised clustering Mixture models for RNA-seq data

Discussion of PMM for RNA-seq data

Advantages:
@ Directly models counts (no data transformation necessary)
@ Clusters interpreted in terms of profiles around mean expression
© Implemented in HTSCluster package on CRAN (v1.0.8)

© Promising results on real data...

Limitations:
© Slope heuristics requires a very large collection of models to be fit
@ Restrictive assumption of conditional independence among samples
© Cannot model per-cluster correlation structures

@ Poisson distribution requires assuming that mean = variance
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Unsupervised clustering ~ Mixture models for RNA-seq data

Correlation structures in RNA-seq data
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Example: data from Mach et al. (2014) on site-specific gene expression along the gastrointestinal tract of 4 healthy piglets

andrea.rau@jouy.inra.fr 35/ 45



Unsupervised clustering Mixture models for RNA-seq data

Gaussian mixture models for RNA-seq

Idea: Transform RNA-seq data, then apply Gaussian mixture models

Several data transformations have been proposed for RNA-seq to render
the data approximately homoskedastic:

® logy(y; + ¢)

@ Variance stabilizing transformation (DESeq)
@ Moderated log counts per million (edgeR)
@ Regularized log-transformation (DESeq2)

... but recall that we wish to cluster the normalized profiles p;; = %
e Yit/Sj
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Unsupervised clustering Mixture models for RNA-seq data

Remark: transformation needed for normalized profiles

@ Note that the normalized profiles are compositional data, i.e. the sum
for each gene p;. =1

@ This implies that the vector p; is linearly dependent = imposes
constraints on the covariance matrices ¥, that are problematic for
the general GMM

@ As such, we consider a transformation on the normalized profiles to
break the sum constraint:

Bij = g(pyj) = arcsin (\/pjj)

And fit a GMM to the transformed normalized profiles:

f(BIK, Wk) HZWW(PJ@,ZU

i=1 k=1
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Unsupervised clustering Mixture models for RNA-seq data

Running the PMM or GMM for RNA-seq data with coseq

library(coseq)

GMM <- coseq(counts, K=2:10, model="Normal",
transformation="arcsin")

summary (GMM)

plot (GMM)

## Note: indirectly calls HTSCluster for PMM

PMM <- coseq(counts, K=2:10, model="Poisson",
transformation="none")

summary (PMM)

plot (PMM)

V VV V V V V V V V V.YV
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Unsupervised clustering Mixture models for RNA-seq data

Examining GMM results
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Unsupervised clustering

Examining GMM results

9 101112
Sample number
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Unsupervised clustering Mixture models for RNA-seq data
Examining GMM results
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Unsupervised clustering Mixture models for RNA-seq data

Evaluation of clustering quality
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Unsupervised clustering Mixture models for RNA-seq data

Evaluation of clustering quality

Pl
i
]
[ ] I H
z 7 i |
= -
% 0.8- . ! 1
g ] ] P 1
pu -
g’ - - ] l '
- " -
k5 - b jo i
£ Cor :
L]
Sos- ' i - 5 :
é - l L i ] l
= | H 0
L3 [ ] s . : l
- L] - -
it L] i 9 !
1 - [ ] - .
L] & - 1 &
0.4- L L H
- - - .
1 3 4 11 8 10 7 5 9 12 8 2
Cluster

andrea.rau@jouy.inra.fr 40 / 45



Evaluation of clustering quality
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Conclusion / discussion

Conclusions: RNA-seq co-expression

Some practical questions to consider prior to co-expression analyses:

@ Should all genes be included?
Screening via differential analysis or a filtering step (based on mean
expression or coefficient of variation)...
~» Usually a good idea, genes that contribute noise will affect results!

@ What to do about replicates?
Average, or model each one independently?
~> Note that the PMM makes use of experimental condition labels,
but the GMM does not...
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Conclusion / discussion

A note about evaluating clustering approaches®

o Clustering results can be evaluated based on internal criteria (e.g.,
statistical properties of clusters) or external criteria (e.g., functional
annotations)

@ Preprocessing details (normalization, filtering, dealing with missing
values) can affect clustering outcome

@ Methods that give different results depending on the initialization
should be rerun multiple times to check for stability

@ Most clustering methods will find clusters even when no actual
structure is present = good idea to compare to results with
randomized data!

8D’haeseller, 2005
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Conclusion / discussion

A note about validating clustering approaches on real data

o Difficult to compare several clustering algorithms on a given dataset
(and difficult to discern under which circumstances a particular
method should be preferred)

o Adjusted Rand index: measure of similarity between two data
clusterings, adjusted for the chance grouping of elements

~> ARI has expected value of 0 in the case of a random partition, and
is bounded above by 1 in the case of perfect agreement
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Conclusion / discussion

A note about validating clustering approaches on real data

o Difficult to compare several clustering algorithms on a given dataset
(and difficult to discern under which circumstances a particular
method should be preferred)

o Adjusted Rand index: measure of similarity between two data
clusterings, adjusted for the chance grouping of elements
~> ARI has expected value of 0 in the case of a random partition, and
is bounded above by 1 in the case of perfect agreement

o Difficult to evaluate how well a given clustering algorithm performs on
transcriptomic data

@ No one-size-fits-all solution to clustering, and no consensus of what a
“good"” clustering looks like = use more than one clustering
algorithm!
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Conclusion / discussion

Final thoughts®

E E There is no single best criterion for

obtaining a partition because no precise and workable
definition of cluster exists. Clusters can be of any arbitrary
shapes and sizes in a multidimensional pattern space. Each
clustering criterion imposes a certain structure on the data,
and if the data happen to conform to the requirements of a
particular criterion, the true clusters are
recovered.

%Jain & Dubes, 1988
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Conclusion / discussion
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Real data analysis: Embryonic fly development

@ modENCODE project to provide functional annotation of Drosophila
(Graveley et al., 2011)

@ Expression dynamics over 27 distinct stages of development during
life cycle studied with RNA-seq
@ 12 embryonic samples (collected at 2-hr intervals over 24 hrs) for

13,164 genes downloaded from ReCount database (Frazee et al.,
2011)




Real data analysis: Embryonic fly development

Screen genes to include only DE genes (DESeq2)
K-means clustering
Hierarchical clustering

Gaussian mixture model on transformed normalized expression profiles

Keep in mind the advantages / disadvantages of different approaches:
speed, stability, robusntess, interpretability, model selection, ...
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