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Introduction and motivations

Regression and classification from an
infinite dimensional predictor

Settings
(X ,Y) is a random pair of variables where

Y ∈ {−1, 1} (binary classification problem) or Y ∈ R

X ∈ (X, 〈., .〉X), an infinite dimensional Hilbert space.

We are given a learning set Sn = {(Xi ,Yi)}
n
i=1 of n i.i.d. copies

of (X ,Y).

Purpose: Find φn : X → {−1, 1} or R, that is universally consistent:
Regression case: limn→+∞ E

(
[φn(X) − Y ]2

)
= L∗ where

L∗ = infφ:X→R E
(
[φ(X) − Y ]2

)
will also be called the Bayes risk.
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Introduction and motivations

An example

Predicting the rate of yellow berry in durum wheat from its NIR
spectrum.
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Introduction and motivations

Using derivatives

Practically, X (m) is often more relevant than X for the prediction.

But X → X (m) induces information loss and

inf
φ:DmX→{−1,1}

P
(
φ(X (m)) , Y

)
≥ inf

φ:X→{−1,1}
P (φ(X) , Y) = L∗

and

inf
φ:DmX→R

E
([
φ(X (m)) − Y

]2
)
≥ inf

φ:X→R
P
(
[φ(X) − Y ]2

)
= L∗.
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Introduction and motivations

Sampled functions

Practically, (Xi)i are not perfectly known; only a discrete sampling
is given: Xτd

i = (Xi(t))t∈τd where τd = {tτd
1 , . . . , tτd

|τd |
}.

Then, X (m)
i is estimated from Xτd

i , by X̂ (m)
τd , which also induces

information loss:

inf
φ:DmX→{−1,1}

P
(
φ(X̂ (m)

τd ) , Y
)
≥ inf

φ:DmX→{−1,1}
P
(
φ(X (m)) , Y

)
≥ L∗

and

inf
φ:DmX→R

E

([
φ(X̂ (m)

τd ) − Y
]2

)
≥ inf

φ:DmX→R
E

([
φ(X (m)) − Y

]2
)
≥ L∗.
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Introduction and motivations

Purpose of the presentation

Find a classifier or a regression function φn,τd built from X̂ (m)
τd such

that the risk of φn,τd asymptotically reaches the Bayes risk L∗:

lim
|τd |→+∞

lim
n→+∞

P
(
φn,τd (X̂ (m)

τd ) , Y
)

= L∗

or

lim
|τd |→+∞

lim
n→+∞

E

([
φn,τd (X̂ (m)

τd ) − Y
]2

)
= L∗

Main idea: Use a relevant way to estimate X (m) from Xτd (by
smoothing splines) and combine the consistency of splines with
the consistency of a R|τd |-classifier or regression function.
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A general consistency result

Basics about smoothing splines I

Suppose that X is the Sobolev space

Hm =
{
h ∈ L2

[0,1]|∀ j = 1, . . . ,m,D jh exists (weak sense) and Dmh ∈ L2
}

equipped with the scalar product

〈u, v〉Hm = 〈Dmu,Dmv〉L2 +
m∑

j=1

B juB jv

where B are m boundary conditions such that KerB ∩ Pm−1 = {0}.
(Hm, 〈., .〉Hm ) is a RKHS: ∃ k0 : Pm−1 × Pm−1 → R and
k1 : KerB × KerB → R such that

∀ u ∈ Pm−1, t ∈ [0, 1], 〈u, k0(t , .)〉Hm = u(t)

and
∀ u ∈ KerB , t ∈ [0, 1], 〈u, k1(t , .)〉Hm = u(t)

See [Berlinet and Thomas-Agnan, 2004] for further details.
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A general consistency result

Basics about smoothing splines II

A simple example of boundary conditions:

h(0) = h(1)(0) = . . . = h(m−1)(0) = 0.

Then,

k0(s, t) =
m−1∑
k=0

tk sk

(k !)2

and

k1(s, t) =

∫ 1

0

(t − w)m−1
+ (s − w)m−1

+

(m − 1)!
dw.

10 / 30
Nathalie Villa-Vialaneix

N



A general consistency result

Estimating the predictors with smooth-
ing splines I

Assumption (A1)

|τd | ≥ m − 1

sampling points are distinct in [0, 1]

B j are linearly independent from h → h(t) for all t ∈ τd

[Kimeldorf and Wahba, 1971]: for xτd in R|τd |, ∃ !x̂λ,τd ∈ H
m

solution of

arg min
h∈Hm

1
|τd |

|τd |∑
l=1

(h(tl) − xτd )2 + λ

∫
[0,1]

(h(m)(t))2dt .

and x̂λ,τd = Sλ,τd xτd where Sλ,τd : R|τd | → Hm.
These assumptions are fullfilled by the previous simple example as
long as 0 < τd .
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A general consistency result

Estimating the predictors with smooth-
ing splines II

Sλ,τd is given by:

Sλ,τd = ωT (U(K1 + λI|τd |)U
T )−1U(K1 + λI|τd |)

−1

+ηT (K1 + λI|τd |)
−1(I|τd | − UT (U(K1 + λI|τd |)

−1U(K1 + λI|τd |)
−1)

= ωT M0 + ηT M1

with

{ω1, . . . , ωm} is a basis of Pm−1, ω = (ω1, . . . , ωm)T and
U = (ωi(t))i=1,...,m t∈τd ;

η = (k1(t , .))T
t∈τd

and K1 = (k1(t , t ′))t ,t ′∈τd .

The observations of the predictor X (NIR spectra) are then
estimated from their sampling Xτd by X̂λ,τd .
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A general consistency result

Two important consequences

1 No information loss

inf
φ:Hm→{−1,1}

P
(
φ(X̂λ,τd ) , Y

)
= inf

φ:R|τd |→{−1,1}
P (φ(Xτd ) , Y)

and

inf
φ:Hm→{−1,1}

E
([
φ(X̂λ,τd ) − Y

]2
)

= inf
φ:R|τd |→{−1,1}

P
(
[φ(Xτd ) − Y ]2

)

2 Easy way to use derivatives:

= 〈̂uλ,τd , v̂λ,τd 〉Hm

' 〈̂u(m)
λ,τd

, v̂(m)
λ,τd
〉L2

where Qλ,τd is the Choleski triangle of Mλ,τd : QT
λ,τd

Qλ,τd = Mλ,τd .
Remark: Qλ,τd is calculated only from the RKHS, λ and τd : it does
not depend on the data set.
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and

inf
φ:Hm→{−1,1}

E
([
φ(X̂λ,τd ) − Y

]2
)

= inf
φ:R|τd |→{−1,1}

P
(
[φ(Xτd ) − Y ]2

)
2 Easy way to use derivatives:

(Qλ,τd uτd )T (Qλ,τd vτd ) = 〈̂uλ,τd , v̂λ,τd 〉Hm

' 〈̂u(m)
λ,τd

, v̂(m)
λ,τd
〉L2

where Qλ,τd is the Choleski triangle of Mλ,τd : QT
λ,τd

Qλ,τd = Mλ,τd .
Remark: Qλ,τd is calculated only from the RKHS, λ and τd : it does
not depend on the data set.
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A general consistency result

Classification and regression based on
derivatives

Suppose that we know a consistent classifier or regression
function in R|τd | that is based on R|τd | scalar product or norm.

The corresponding derivative based classifier or regression
function is given by using the norm induced by Qλ,τd :

Example: Nonparametric kernel regression

Ψ : u ∈ R|τd | →

∑n
i=1 TiK

(
‖u−Ui‖R|τd |

hn

)
∑n

i=1 K
(
‖u−Ui‖R|τd |

hn

)
where (Ui ,Ti)i=1,...,n is a learning set in R|τd | × R.

φn,d = Ψ ◦ Qλ,τd : x ∈ Hm →

∑n
i=1 YiK

(
‖Qλ,τd xτd−Qλ,τd X

τd
i ‖R|τd |

hn

)
∑n

i=1 K
(
‖Qλ,τd xτd−Qλ,τd X

τd
i ‖R|τd |

hn

)

'
−→

∑n
i=1 YiK

(
‖x(m)−X (m)

i ‖L2

hn

)
∑n

i=1 K
(
‖x(m)−X (m)

i ‖L2

hn

)
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A general consistency result

Remark for consistency

Classification case (approximatively the same is true for
regression):

P
(
φn,τd (X̂λ,τd ) , Y

)
− L∗ = P

(
φn,τd (X̂λ,τd ) , Y

)
− L∗d + L∗d − L∗

where L∗d = infφ:R|τd |→{−1,1} P (φ(Xτd ) , Y).

1 For all fixed d,
lim

n→+∞
P
(
φn,τd (X̂λ,τd ) , Y

)
= L∗d

as long as the R|τd |-classifier is consistent because there is a
one-to-one mapping between Xτd and X̂λ,τd .

2 L∗d − L∗ ≤ E
(∣∣∣∣E(Y |X̂λ,τd ) − E(Y |X)

∣∣∣∣)
with consistency of spline estimate X̂λ,τd and assumption on the
regularity of E(Y |X = .), consistency would be proved.

But continuity of E(Y |X = .) is a strong assumption in infinite
dimensional case, and is not easy to check.
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A general consistency result

Spline consistency

Let λ depends on d and denote (λd)d the series of regularization
parameters. Also introduce
∆τd := max{t1, t2 − t1, . . . , 1 − t|τd |}, ∆τd

:= min1≤i<|τd |{ti+1 − ti}

Assumption (A2)
∃R such that ∆τd/∆τd

≤ R for all d;

limd→+∞ |τd | = +∞;

limd→+∞ λd = 0.

[Ragozin, 1983]: Under (A1) and (A2), ∃AR ,m and BR ,m such that
for any x ∈ Hm and any λd > 0,∥∥∥x̂λd ,τd − x

∥∥∥2
L2 ≤

(
AR ,mλd + BR ,m

1
|τd |

2m

)
‖Dmx‖2L2

d→+∞
−−−−−−→ 0
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A general consistency result

Bayes risk consistency

Assumption (A3a)

E
(
‖DmX‖2

L2

)
is finite and Y ∈ {−1, 1}.

or

Assumption (A3b)

τd ⊂ τd+1 for all d and E(Y2) is finite.

Under (A1)-(A3), limd→+∞ L∗d = L∗.
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A general consistency result

Proof under assumption (A3a)

Assumption (A3a)

E
(
‖DmX‖2

L2

)
is finite and Y ∈ {−1, 1}.

The proof is based on a result of [Faragó and Györfi, 1975]:

Td is the spline estimate based on the sampling;

the inequality of [Ragozin, 1983] about this estimate is exactly the
assumption of Farago and Gyorfi’s Theorem.

Then the result follows.
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Assumption (A3a)

E
(
‖DmX‖2

L2

)
is finite and Y ∈ {−1, 1}.

The proof is based on a result of [Faragó and Györfi, 1975]:

For a pair of random variables (X ,Y) taking their values in
X×{−1, 1} whereX is an arbitrary metric space and for a series
of functions Td : X → X such that

E(δ(Td(X),X))
d→+∞
−−−−−−→ 0

then limd→+∞ infφ:X→{−1,1} P(φ(Td(X)) , Y) = L∗.

Td is the spline estimate based on the sampling;

the inequality of [Ragozin, 1983] about this estimate is exactly the
assumption of Farago and Gyorfi’s Theorem.

Then the result follows.
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A general consistency result

Proof under assumption (A3b)

Assumption (A3b)

τd ⊂ τd+1 for all d and E(Y2) is finite.

Under (A3b), (E(Y |X̂λd ,τd ))d is a uniformly bounded martingale and
thus converges for the L1-norm. Using the consistency of (X̂λd ,τd )d

to X ends the proof.
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A general consistency result

Concluding result (consistency)

Theorem

Under assumptions (A1)-(A3),

lim
|τd |→+∞

lim
n→+∞

P
(
φn,τd (X̂λd ,τd ) , Y

)
= L∗

and
lim

|τd |→+∞
lim

n→+∞
E

([
φn,τd (X̂λd ,τd ) − Y

]2
)

= L∗

Proof: For a ε > 0, fix d0 such that, for all d ≥ d0, L∗d − L∗ ≤ ε/2.
Then, by consistency of the R|τd |-classifier or regression function,
conclude.
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A general consistency result

A practical application to SVM I

Recall that, for a learning set (Ui ,Ti)i=1,...,n in Rp × {−1, 1},
gaussian SVM is the classifier

u ∈ Rp → Sign

 n∑
i=1

αiTie
−γ‖u−Ui‖

2
Rp


where (αi)i satisfy the following quadratic optimization problem:

arg min
w

n∑
i=1

∣∣∣1 − Tiw(Ui)
∣∣∣
+

+ C‖w‖2
S

where w(u) =
∑n

i=1 αie
−γ‖u−Ui‖

2
Rp and S is the RKHS associated

with the gaussian kernel and C is a regularization parameter.

Under suitable assumptions, [Steinwart, 2002] proves the
consistency of SVM classifiers.
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A general consistency result

A practical application to SVM II

Additional assumptions related to SVM: Assumptions (A4)
For all d, the regularization parameter depends on n such that
limn→+∞ nCd

n = +∞ and Cd
n = On

(
nβd−1

)
for a 0 < βd < 1/d.

For all d, there is a bounded subset of R|τd |, Bd , such that Xτd

belongs to Bd .

Result: Under assumptions (A1)-(A4), the SVM φn,d : x ∈ Hm →

Sign

 n∑
i=1

αiYie
−γ‖Qλd ,τd xτd−Qλd ,τd X

τd
i ‖

2
Rd

 ' Sign

 n∑
i=1

αiYie
−γ‖x(m)−X (m)

i |2
L2


is consistent: lim|τd |→+∞ limn→+∞ P

(
φn,τd (X̂λd ,τd ) , Y

)
= L∗.
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A general consistency result

Additional remark about the link be-
tween n and |τd |

Under suitable (and usual) regularity assumptions on E(Y |X = .)
and if n ∼ ν|τd | log |τd |, the rate of convergence of this method is of
order d−

2ν
2ν+1 where ν is either equal to m or to a Lipchitz constant

related to E(Y |X = .).
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Examples

Outline

1 Introduction and motivations

2 A general consistency result

3 Examples
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Examples

Chosen regression method: Regression
with kernel ridge regression

Recall that kernel ridge regression in Rp is given by solving

arg min
w

n∑
i=1

(Ti − w(Ui))2 + C‖w‖2
S

where S is a RKHS induced by a given kernel (such as the
Gaussian kernel) and (Ui ,Ti)i is a training sample in Rp × R.

In the following examples, Ui is either:

the original (sampled) functions Xi (viewed as R|τd | vectors);

Qλ,τd Xτd
i for derivatives of order 1 or 2.
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Examples

Example 1: Predicting yellow berry in
durum wheat from NIR spectra

953 wheat samples were analyzed:
NIR spectrometry: 1049 wavelengths regularly ranged from 400 to
2498 nm;

Yellow berry: manual count (%) of affected grains.

Kernel (SVM) MSE on test (and sd ×10−3)
Linear (L ) 0.122 (8.77)
Linear on derivatives (L (1)) 0.138 (9.53)
Linear on second derivatives (L (2)) 0.122 (1.71)
Gaussian (G) 0.110 (20.2)
Gaussian on derivatives (G(1)) 0.098 (7.92)
Gaussian on second derivatives (G(2)) 0.094 (8.35)

The differences are significant
between G(2) / G(1) and be-
tween G(1) / G.
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Example 1: Predicting yellow berry in
durum wheat from NIR spectra

953 wheat samples were analyzed:
NIR spectrometry: 1049 wavelengths regularly ranged from 400 to
2498 nm;

Yellow berry: manual count (%) of affected grains.

Methodology for comparison:
Split the data into train/test sets (50 times);

Train 50 regression functions for the 50 train sets
(hyper-parameters were tuned by CV);

Evaluate these regression functions by calculating the MSE for the
50 corresponding test sets.

Kernel (SVM) MSE on test (and sd ×10−3)
Linear (L ) 0.122 (8.77)
Linear on derivatives (L (1)) 0.138 (9.53)
Linear on second derivatives (L (2)) 0.122 (1.71)
Gaussian (G) 0.110 (20.2)
Gaussian on derivatives (G(1)) 0.098 (7.92)
Gaussian on second derivatives (G(2)) 0.094 (8.35)
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Examples

Comparison with PLS...

MSE (mean) MSE (sd)
PLS 0.154 0.012
Kernel PLS 0.154 0.013
KRR splines (reg. D2) 0.094 0.008

Error decrease: almost 40 %

SVM−D2 KPLS PLS

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

27 / 30
Nathalie Villa-Vialaneix

N



Examples

Example 2: Simulated noisy spectra

Original data:

Variable to predict: Fat content of pieces of meat.

Worse noisy
data: Xb

i (t) = Xi(t) + εit , εit ∼ N(0, 0.2), i.i.d.:
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Examples

Example 2: Simulated noisy spectra

Noisy data: Xb
i (t) = Xi(t) + εit , εit ∼ N(0, 0.01), i.i.d.:

Worse noisy data: Xb
i (t) = Xi(t) + εit , εit ∼ N(0, 0.2), i.i.d.:
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Examples

Methodology for comparison

Split the data into train/test sets (250 times);

Train 250 regression functions for the 250 train sets
(hyper-parameters were tuned by CV) with the predictors being

the original (sampled) functions Xi (viewed as R|τd | vectors);
Qλ,τd Xτd

i for derivatives of order 1 or 2: smoothing splines
derivatives;
Q0,τd Xτd

i for derivatives of order 1 or 2: interpolating splines
derivatives;
derivatives of order 1 or 2 evaluated by

Xi (tj+1)−Xi (tj )
tj+1−tj

: finite differences
derivatives;

Evaluate these regression functions by calculating the MSE for the
50 corresponding test sets.
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Examples

Performances
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