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(X,Y) is a random pair of variables where

o Y e {-1,1} (binary classification problem) or Y € R

o X € (X,{,.)x), an infinite dimensional Hilbert space.

We are given a learning set S, = {(Xi, Y,-)},f’:1 of ni.i.d. copies
of (X, Y).

Purpose: Find ¢, : X — {—1,1} or R, that is universally consistent:
Classification case: limp—, ;. P (¢n(X) # Y) = L* where
L* = infg.x—(-1,1y P(¢(X) # Y) is the Bayes risk.
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F\ Introduction and motivations

<> UPVD

Settings
(X,Y) is a random pair of variables where

o Y e {-1,1} (binary classification problem) or Y € R
o X € (X,{,.)x), an infinite dimensional Hilbert space.
We are given a learning set S, = {(X, Yi)}7_, of ni.i.d. copies
of (X, Y).
Purpose: Find ¢, : X — {—1,1} or R, that is universally consistent:
Regression case: Iimn_>+wE([¢,,(X) - Y]2) = L* where
L* = infy.x = B([¢(X) - YI?) will also be called the Bayes risk.
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Introduction and motivations

An example
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Predicting the rate of yellow berry in durum wheat from its NIR
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Introduction and motivations

Using derivatives

Practically, X(™ is often more relevant than X for the prediction.
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Introduction and motivations

Using derivatives

<> UPVD

Practically, X(™ is often more relevant than X for the prediction.

Second derivative: infrared-spectrum of meat
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Introduction and motivations

Using derivatives

Practically, X(™ is often more relevant than X for the prediction.
But X — X(M induces information loss and
. (m) . _
¢:Dm)i’rl]:{_1,1}]?(¢(x )# y) = ¢:erEf_1,1}P(¢(X) *Y) =L
and

inf E([¢(x(m)) - Y]z) >

¢:DMX—>R

(le(x) - YP?) = L°.

inf P
¢:X—>R
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Sampled functions

Practically, (X;); are not perfectly known; only a discrete sampling

is given: X[ = (Xi(1))ter, Where 7g = {{%,..., 1 }.

Uniform sampling,
non noisy data
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Introduction and motivations

Sampled functions

Practically, (X;); are not perfectly known; only a discrete sampling

is given: X[ = (Xi(1))ter, Where 7g = {{%,..., 1 }.

Non uniform sampling,
noisy data

... and the data can be corrupted by noise.
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Introduction and motivations

Sampled functions

< UPVD
Practically, (X;); are not perfectly known; only a discrete sampling
is given: X = (Xi(t))tery Where 74 = {19, .. |le}

Then, Xi(m) is estimated from X,T", by YT(;") which also induces
information loss:

inf ]P( X(m Y) inf P(o(XM) 2 Y)>L*
pord BT 2 Y )2 inf | P(e(X(™) % V)

and

inf E([¢(Y£;”))—Yr)z inf E([¢(x<m))—v]2)zL*.

¢:DMX->R ¢:DMX—>R
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Introduction and motivations

Purpose of the presentation

<> UPVD

Find a classifier or a regression function ¢, -, built from ’)?T(‘T) such
that the risk of ¢, -, asymptotically reaches the Bayes risk L*:

im i X y) yy
|Td|lm—oo nﬂTmP((ﬁn,rd (XTd ) *
or
- - w(m) 2 _ -
lim lim E||¢n,(Xr,')=Y| |=L

[Tgl——00 N—+00
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Find a classifier or a regression function ¢, -, built from ’)?T(L") such
that the risk of ¢, -, asymptotically reaches the Bayes risk L*:

lim  lim P(¢n,,d(x(g”)) 4 y): L*

[Tgl—=~00 N—+00

or
lim  lim E([%Td(iﬁg’”)— Yr) — L

[Tgl——00 N—+00

Main idea: Use a relevant way to estimate X(™ from X" (by
smoothing splines) and combine the consistency of splines with
the consistency of a RI™!-classifier or regression function.
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Basics about smoothing splines |
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Basics about smoothing splines |

<> UPVD
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<> UPVD
Suppose that X is the Sobolev space
H™ ={heLf IVj=1,....m,Dh exists (weak sense) and D"h e L}
equipped with the scalar product
m . .
(U, Vygym = (D"u, D™V}, 2 + Z B'uB'v
j=1

where B are m boundary conditions such that KerB N P! = {0}.
(H™, (., )yym) is a RKHS: T ky : P! x P! — R and
ki1 : KerB x KerB — R such that

VueP™', tel0,1],{u, ko(t,.))gm = u(t)

and
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A general consistency result

Basics about smoothing splines Il

<> UPVD

A simple example of boundary conditions:
h(0) = h((0) =... = h(™(0) = 0.

Then,

Nathalie Villa-Vialaneix 10/30
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A general consistency result

Estimating the predictors with smooth-

Assumption (A1)
o |rgl=m-1
o sampling points are distinct in [0, 1]

o Bl are linearly independent from h — h(t) for all t € 74
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F\ A general consistency result
Estimating the predictors with smooth-

< UPVD

Assumption (A1)
o |tgl=m-1
o sampling points are distinct in [0, 1]

o Bl are linearly independent from h — h(t) for all t € 74

[Kimeldorf and Wahba, 1971]: for x™ in RI%l, 1%, ,, € H™
solution of

I7dl

arg min _Z(h(t’) de)2+/1f[ ](h(m)(t))zdt.

heH™

and Xy.r, = S1,X™ Where S, : RITl — H™.
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A general consistency result

<> UPVD

Assumption (A1)
o |tgl=m-1
o sampling points are distinct in [0, 1]

o B/ are linearly independent from h — h(t) for all t € 74

[Kimeldorf and Wahba, 1971]: for x™ in RI%l, 1%, ,, € H™

solution of
[7dl
’
arg min — » (h(t) — x™ 2+/1f h(m)(1))2dt.
900 g 200 =X+ 2 | (WD)

and Xy, = Si,X™ where S, , : RIFdl — H™.
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A general consistency result

=3

S S
521 Estimating the predictors with smooth-

<> UPVD
Sz, is given by:

Sirg = @ (UKt + Ak )UT)TU(Ks + ATjry) ™
0" (Kt + Aliegg) ™ (Teg = UT(U(K1 + Aljey) TU(KY A+ ATiey) ™)
= w My+n"M
with

T

o {w1,...,wn) is abasis of P, w = (w1,...,wn)" and

U= (wi(t))i:1 ..... m terg»
o n= (k1(t’ '));rerd and K1 = (k'l (ty t,))t,t’E‘rd-
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A general consistency result

Estimating the predictors with smooth-

Sz, is given by:

Sirg = @ (UKt + Ak )UT)TU(Ks + ATjry) ™
0" (Kt + Aliegg) ™ (Teg = UT(U(K1 + Aljey) TU(KY A+ ATiey) ™)
= w My+n"M
with

T

o {w1,...,wn) is abasis of P, w = (w1,...,wn)" and

U= ((Ui(t))i:1 ..... m terys
o 7= (ki(t,.))er, and Ky = (ki (t,t'))1.rery-
The observations of the predictor X (NIR spectra) are then
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A general consistency result

Two important consequences

@ No information loss

inf P(a(X Y)= inf  P(a(X)2Y
L I (6(Xizy) 2 V) ol ((X™) £ Y)
and
_ = 2 . 2
E([6(X.) - Y ): £ P([e(X) -
et ([eXiz) - v et (Io0x) - P)

Nathalie Villa-Vialaneix 13/30



A general consistency result

Two important consequences

@ No information loss

inf P(a(X Y)= inf  P(a(X)2Y
PO (6(Xizy) 2 V) L (p(X™) )
and
_ = 2 . 2
X )-Y ): £ P([e(X) -
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A general consistency result

Two important consequences

<> UPVD

@ No information loss

inf P Y Y)= inf P X7 Y
LI (¢( Vo) # ) ¢:R"d=—>[—1,1} (¢(X™) = Y)
and
. = 2 . 5
X -Y ): f P X)) —
e B ([0 - V] st B (o< = YT7)

Q Easy way to use derivatives:
(U™) "M WMov™ + (™) "M KiMiv' = (Unry, Var gum

where K;, My and M; have been previously defined and
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A general consistency result

Two important consequences

<> UPVD

@ No information loss

inf P(a(X Y)= inf  P(a(X)2Y
¢:71m|2{—1,1} (¢( Vo) # ) ¢:R‘7d=_)[_1’1} (o(X™) #Y)
and
_ = 2 . 2
X )= Y ): £ P(jp(X™) -
¢:wm|21;—1,1}E([¢( Nrg) ] ¢:erd}2{_1’” ([¢( ) Y])

Q Easy way to use derivatives:

(qu ) T M/I,‘rd de - (J/I,Td ’ V/I,‘rd >7’("’

where M, ., is symmetric, definite positive.

Nathalie Villa-Vialaneix 13/30



A general consistency result

Two important consequences

<> UPVD

@ No information loss

inf P 7 Y) = inf P X7 Y
LI (¢( Vo) # ) ¢:R‘7d=2[_1’” (¢(X™) £ Y)
and
. = 2 . 5
X -Y ) = f P X)) —
e B ([0 - V] st B (o< = YT7)

Q Easy way to use derivatives:
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= UPVD Two important consequences

@ No information loss

inf P(a(X Y)= inf  P(a(X)2Y
sy (6(Xaz,) # Y) padt | POX) 2 Y)

and

el Bl V)= et (o0 - )

¢:RITdl—{—1,1}
Q Easy way to use derivatives:

(Q/l,Td qu ) T (Q/l,‘l'd de ) - (\/1 \Td? "Zl \Td )-}(m
~ (‘(m) —{m) )
L L2

‘I'd /le
where Q, ., is the Choleski triangle of M, ;: QM Qury = My,
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:‘ A general consistency result

p o .
s Classification and regression based on

<> UPVD

Suppose that we know a consistent classifier or regression
function in R/ that is based on R'™! scalar product or norm.

Example: Nonparametric kernel regression

lu=Uill, jzg1
n T RTd
i—1 TiK ( P )

lu=Uill r g1
n e

V:yeRlm

where (U;, T))i1,..n is a learning set in RIl x R.

.....
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:‘ A general consistency result

p o .
s Classification and regression based on

<> UPVD

Suppose that we know a consistent classifier or regression
function in RI™ that is based on Rl scalar product or norm.
The corresponding derivative based classifier or regression
function is given by using the norm induced by Q, -,:

Example: Nonparametric kernel regression

Q. X d=Quur X Ol e
n g Td Td Y RITd
i=1 Y,K( P

bndg=VoQu:xeH" — - -
n K(Hol,rdx d-Qu74X; ||]R|Td|)

i=1 P

Nathalie Villa-Vialaneix 14/30



:‘ A general consistency result

p o .
s Classification and regression based on

<> UPVD

Suppose that we know a consistent classifier or regression
function in R that is based on R scalar product or norm.
The corresponding derivative based classifier or regression
function is given by using the norm induced by Q, -,:

Example: Nonparametric kernel regression

Qe X = Q1 ey XL e
n g Td -Td 7 plTd
L Y,K( by

n Qg X"d—Q, X9 llgirql
K P

bndg=VoQu:xeH" —

i=1

(m)
n v [ X=Xl
L Y,K(,,—;

=
m) _x (M
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A general consistency result

Remark for consistency

Classification case (approximatively the same is true for
regression):

(¢nrd(Xm) £Y)-L (¢nfd(XMd) £Y)-Ly+Ly-L°
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A general consistency result

Remark for consistenc

<> UPVD
Classification case (approximatively the same is true for
regression):

P(fnrg(Xirg) # Y) = L* =P (dnry(Xorg) # Y) - L+ Ly - L*
where Ly = infy prai__1 1) P (¢(X™) # Y).

@ For all fixed d, _
nE)TooP(¢n’Td (Xazy) # Y) =L

as long as the R™I-classifier is consistent because there is a
one-to-one mapping between X and X -, .
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Classification case (approximatively the same is true for
regression):

P($nrg(Xirg) # ¥) = L' = P($ny(Xarg) # ¥) = L+ L~ L*
where Ly = infy prai__1 1) P (¢(X™) # Y).
@ For all fixed d,

2 £ ) =

as long as the RI/-classifier is consistent because there is a
one-to-one mapping between X and X -,.

Q Lj- L <B([E(VXr,) - E(YIX)))

with consistency of spline estimate Xm and assumption on the
regularity of E(Y|X = .), consistency would be proved.

Nathalie Villa-Vialaneix

15/30



<> UPVD

Classification case (approximatively the same is true for
regression):

P($nry(Xirg) # Y) = L* = B($ncy(Xary) # Y) — LG+ L5~ L*

where L; = Inf¢:erd|_,{_1’1}P(¢(X d) # Y)'

@ For all fixed d, _
i B (00 (%) 2 ) =

as long as the R™-classifier is consistent because there is a
one-to-one mapping between X and X -,.

Q Lj- L <B([E(VXr,) - E(YIX)))

with consistency of spline estimate Xw and assumption on the
regularity of E(Y|X = .), consistency would be proved.
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< =3 A general consistency result

<3 UPVD
Let A depends on d and denote (14)q the series of regularization

parameters. Also introduce

A, i=max{ty, b —t,..., 1 =ty A, = minggicrg{tivr — G}

Assumption (A2)
o R such that Afd/érd < R for all d;
0 limg 4o ITgl = +00;

o Iimd_,+m /ld =0.
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<> UPVD
Let A depends on d and denote (14)q the series of regularization

parameters. Also introduce
A, i=max{ty, b —t,..., 1 =ty

é‘fd = MiNy<jcirg{tit1 — B}

Assumption (A2)
o R such that Afd/érd < R for all d;
0 limg 4o ITgl = +00;

o Iimd_,+oo /ld =0.

[Ragozin, 1983]: Under (A1) and (A2), dAr m and Bgr m such that

for any x € H™ and any A4 > 0,
o d—+o
_—

%2070 = |72 < |ARmAd + Brum—s— | IDXIZ, 0

Nathalie Villa-Vialaneix




A general consistency result

Bayes risk consistency

Assumption (A3a)
E (IID™X|12,) is finite and Y € {-1,1}.
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A general consistency result

Bayes risk consistenc

Assumption (A3a)
E(IID™X]12,) is finite and Y € {(1,1}.

or

Assumption (A3b)

T4 C 7441 for all d and E(Y?) is finite.

Under (A1)-(A3), liMgo o0 L = L*.
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A general consistency result

Proof under assumption (A3a)

Assumption (A3a)
E(IID™X|12,) is finite and Y € {(~1,1}.
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Assumption (A3a)
E(IID™X|12,) is finite and Y € {(~1,1}.

The proof is based on a result of [Faragé and Gyérfi, 1975]:

For a pair of random variables (X, Y) taking their values in
Xx{-1,1} where X is an arbitrary metric space and for a series
of functions T4 : X — X such that

E(6(Tq(X), X)) 252 0

then Mg -0 iNfg:x— (1,1 P(¢(Ta(X)) # Y) = L™
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A general consistency result

Proof under assumption (A3a

<> UPVD

Assumption (A3a)
E(IID™X|12,) is finite and Y € {(~1,1}.

The proof is based on a result of [Faragé and Gyérfi, 1975]:

o Ty is the spline estimate based on the sampling;

o the inequality of [Ragozin, 1983] about this estimate is exactly the
assumption of Farago and Gyorfi's Theorem.

Then the result follows.
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A general consistency result

Proof under assumption (A3b)

T4 C 7441 for all d and E(Y?) is finite.

/Assumption (A3b) ‘
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Assumption (A3b)

T4 C 7441 for all d and E(Y?) is finite.

Under (A3b), (E(YlEd,Td))d is a uniformly bounded martingale and
thus converges for the L'-norm. Using the consistency of (Xagrg)d
to X ends the proof.
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<> UPVD

Theorem

Under assumptions (A1)-(A3),

i P B 7)<
and . »
lim lim ]E([qb,,,,d(X,ld’Td) _v] )= i

|Tg|——+00 N—>+00

Proof: For a € > 0, fix dy such that, for all d > d, L;‘ —L*<€/2.
Then, by consistency of the RI"9-classifier or regression function,
conclude.
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A general consistency result

practical application to SVM |

Recall that, for a learning set (U;, Tj)i=1.._n in RP x {-1,1},

gaussian SVM is the classifier

n
ueRP — Sign [Z a,-'l',-e_”'“'u"”%")

i=1

.....

where («;); satisfy the following quadratic optimization problem:
n
argmin Z; [1- 'I',-w(U,-)|Jr + Clwlls
=

where w(u) = X7, ajeU"YlEe and S is the RKHS associated

with the gaussian kernel and C is a regularization parameter.
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< UPVD

Recall that, for a learning set (U;, Tj)i=1.._n in RP x {-1,1},
gaussian SVM is the classifier

n
ueRP — Sign [Z a,-'l',-e‘yI'“'U"”lrzﬁPJ

i=1

where («;); satisfy the following quadratic optimization problem:

n
argmin Z [1- 'I',-w(U,-)|Jr + Clwlls
i=1
where w(u) = X7, ajeU"YlEe and S is the RKHS associated
with the gaussian kernel and C is a regularization parameter.
Under suitable assumptions, [Steinwart, 2002] proves the
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A general consistency result

A practical application to SVM Il

<> UPVD

Additional assumptions related to SVM: Assumptions (A4)

o For all d, the regularization parameter depends on n such that
limp_ 40 NCZ = +o0 and C¢ = O, (nﬁH) fora0 < By < 1/d.

o For all d, there is a bounded subset of RI™*!, B4, such that X%
belongs to By.
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< UPVD

Additional assumptions related to SVM: Assumptions (A4)

o For all d, the regularization parameter depends on n such that
limp_ 40 NCZ = +o0 and C¢ = O, (nﬁH) fora0 < By < 1/d.

o For all d, there is a bounded subset of RI™*!, B4, such that X%
belongs to By.

Result: Under assumptions (A1)-(A4), the SVM ¢, 4 : x e H™ —

n . n

_ _ dy2 ol (m) ()2

Sign Z a;Yie Qe X —Quy oy X; ||Rd) ~ Sign [Z a;Yie ylx{™ —X; |L2]
i=1 i=1

Nathalie Villa-Vialaneix

22/30



A general consistency result

Additional remark about the link be-

Under suitable (and usual) regularity assumptions on E(Y|X = .)
and if n ~ yi7dllogl7el the rate of convergence of this method is of

order d~27 where v is either equal to m or to a Lipchitz constant
related to E(Y|X = .).
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Examples

Chosen regression method: Regression

<3 UPVD
Recall that kernel ridge regression in RP is given by solving
arg mlnz (Ti = w(U))? + C||w||S

where S is a RKHS induced by a given kernel (such as the
Gaussian kernel) and (U;, Tj); is a training sample in RP x R.
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Examples

Chosen regression method: Regression

< UPVD

Recall that kernel ridge regression in RP is given by solving
n
arg min Z (Ti — w(Uy))? + Cliwli3
i=1

where S is a RKHS induced by a given kernel (such as the
Gaussian kernel) and (U;, Tj); is a training sample in RP x R.
In the following examples, U; is either:

o the original (sampled) functions X; (viewed as R'™! vectors);

o QX for derivatives of order 1 or 2.
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Examples

Example 1: Predicting yellow berry in

<> UPVD

953 wheat samples were analyzed:

o NIR spectrometry: 1049 wavelengths regularly ranged from 400 to
2498 nm;

o Yellow berry: manual count (%) of affected grains.
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Examples

Example 1: Predicting yellow berry in

<> UPVD

953 wheat samples were analyzed:

o NIR spectrometry: 1049 wavelengths regularly ranged from 400 to
2498 nm;

o Yellow berry: manual count (%) of affected grains.
Methodology for comparison:
o Split the data into train/test sets (50 times);

o Train 50 regression functions for the 50 train sets
(hyper-parameters were tuned by CV);

o Evaluate these regression functions by calculating the MSE for the
50 corresponding test sets.
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F\ Examples
Example 1: Predicting yellow berry in

<5 UPVD
Kernel (SVM) MSE on test (and sd x107%)
Linear (L) 0.122 (8.77)
Linear on derivatives (L() 0.138 (9.53)
Linear on second derivatives (L(?)) 0.122 (1.71)
Gaussian (G) 0.110 (20.2)
Gaussian on derivatives (G()) 0.098 (7.92)
Gaussian on second derivatives (G®) 0.094 (8.35)
i Egé T The differences are significant
A E + — | between G® / G(') and be-
T 25| tween G/ G.
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Examples

Comparison with PLS...

< UPVD
MSE (mean) | MSE (sd)
PLS 0.154 0.012
Kernel PLS 0.154 0.013
KRR splines (reg. D?) 0.094 0.008

Error decrease: almost 40 %

010 012 014 016 0.18
1
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Examples

Example 2: Simulated noisy spectra

<> UPVD

Original data:

Infrared-spectrum of meat

absorbence
5 a0 as 40 45
i L L L i

850 200 250 1000 101

waselengths

50
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Examples

Example 2: Simulated noisy spectra

Noisy data: X?(t) = Xi(t) + i, & ~ N(0,0.01), i.i.d.:

Infrared-spectrum of meat

%

850 900 950 1000 108

wavele ngths

50
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< UPVD

o Split the data into train/test sets (250 times);

o Train 250 regression functions for the 250 train sets
(hyper-parameters were tuned by CV) with the predictors being

o the original (sampled) functions X; (viewed as R vectors);
o Q. X/ for derivatives of order 1 or 2: smoothing splines

derivatives;

o Qg X[ for derivatives of order 1 or 2: interpolating splines
derivatives;

o derivatives of order 1 or 2 evaluated by M finite differences
derivatives;

o Evaluate these regression functions by calculating the MSE for the
50 corresponding test sets.

Nathalie Villa-Vialaneix 29/30



Examples

Performances

Nolse with sd = 0.01
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Examples

Performances

Nolse with sd = 0.2
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Any question?
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