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Figure 3. Lean meat percentage phenotype. Estimated values on the
learning set (A) and predicted values on the test set (B), both against the true
values. Predictive model with metabolomic data only.

test sample set, showing reasonable adequacy between
observations and adjustments from the model (Figure 4).
Use of more complex models was useful to obtain greater
prediction scores for some traits as described hereafter.

Reinforced Phenotypic Prediction Using Both Me-
tabolomic and Breed Information (Model 2). The pheno-
types considered here could be sorted into 4 classes depend-
ing on their degree of predictability as shown in Figure 3,
ranging from the best (class C1 with a MSEP less than 0.2)
to the worst (class C4 with a relative error rate greater than
0.70). All phenotypes belonging to the classes C1 and C2
were better predicted when the breed was considered in the
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Figure 4. Mean square error of prediction for all the considered phe-
notypes on the raw metabolomic data with breed information expressed in
phenotypic variance units. Variables C1, C2, C3, and C4 define 4 classes of
prediction accuracies. The 3 preprocessing methods are displayed [raw data,
wavelet transformation with Daubechies basis (Daub. coeff.), and with Haar
(Haar coeff.)]. The phenotypes: MQI = meat quality index; WHC = water hold-
ing capacity of the gluteus superficialis muscle; b*, a*, and L* = color; pH,, =
ultimate pH of the semimembranous muscle; mBF = mean backfat thickness;
BFhj = backfat thickness at the hip joint; BFIr = backfat thickness at the last rib;
BFsh = backfat thickness at the shoulder; Length = length of the carcass from
the pubis to the atlas; Com.LMP = commercial lean meat percentage; LMP
= lean meat percentage; beW = belly weight; shW = shoulder weight; bfW
= backfat weight; loinW = loin weight; hamW = ham weight; DP = dressing
percentage; HCW = weight of the right half-carcass; CWwtH = carcass weight
without the head; CW = carcass weight with the head; FCR = feed conversion
ratio; LWS = weight before departure to the slaughterhouse; LWETP = weight
at the end of the test period. See online version for figure in color.

model (Supplemental Table S2; Figure 3; Supplemental
Figures S8, S9, and S10).

Prediction Using Breed, Batch, and Metabolomic
Information (Model 3). The batch variable does not ap-
pear to be a key parameter in the prediction of phenotypes
(Supplemental Table S2; Figure 3; Supplemental Figures
S8, S9, and S10). Indeed, MSEP values were almost al-
ways slightly greater when batch was taken into account
(except shW and DP for phenotypes of classes C1 and C2).

Selected Variables

As shown in Figure 2B for the ADFI phenotype, the
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Figure 5. Canonical analysis between the proton nuclear magnetic resonance (\H NMR) dataset (X) and the phenotype dataset (Y). A. Projection of variables.
The 'H NMR variables with correlation <0.4 were not plotted. B. Correlation heatmap between variables belonging to the 2 datasets (X and Y). Classes of variables
refer to the prediction levels in Figure 3. The phenotypes: MQI = meat quality index; WHC = water holding capacity of the gluteus superficialis muscle; L*, a*, and
b* = CIELAB color scale; pH,, = ultimate pH of the semimembranous muscle; mBF = mean backfat thickness; BFhj = backfat thickness at the hip joint; BFlr =
backfat thickness at the last rib; BFsh = backfat thickness at the shoulder; Length = length of the carcass from the pubis to the atlas; ComLMP = commercial lean
meat percentage; LMP = lean meat percentage; beW = belly weight; shW = shoulder weight; bfW = backfat weight; loinW = loin weight; hamW = ham weight; DP =
dressing percentage; HCW = weight of the right half-carcass; CWwtH = carcass weight without the head; CW = carcass weight with the head; FCR = feed conversion
ratio; LWS = weight before departure to slaughterhouse; LWETP = BW at the end of the test period. See online version for figure in color.
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Table 2. Variable selection for lean meat percentage (LMP) using the raw data for the three models: metabolomic
data alone (Model 1), metabolomic + breed (Model 2), and metabolomic + breed + batch (Model 3)!

Model 1 Model 2 Model 3
S, ppm (n) Assignment S (ppm) (n) Assignment S (ppm) (n) Assignment
4.05 (100) PL Creatinine 4.05 (100) PL Creatinine 4.05 (100) PL Creatinine
3.93 (100) NL Creatine 1.04 (92) NL Valine 2.25(97)NL Valine
2.43 (100) PL Glutamine 2.54 (88) PL Citrate, p-alanine, 1.04 (84) NL Valine
and unknown
1.33 (100) PL Lactate 2.40 (78) PL Glutamine 2.54 (83) PL Citrate, B-alanine,
and unknown
3.20(97)NL Choline, P-choline, and 2.25(78) NL Valine
glycerol-P-choline
1.45 (89) PL Alanine
2.15(82) PL Glutamine
7.67 (80) NL Unknown
2.51 (74) NL Citrate
0.99 (74) NL Isoleucine

IChemical shifts (3) in parts per million (ppm) and putative assignments are given. The appearance of the variable over the 100 replications is given in pa-
rentheses, with the threshold at 70. Metabolites that are positively linked with LMP are denoted by PL (positively linked), and negatively linked metabolites are

denoted by NL (negatively linked).

number of selected coefficients was always smaller for
preprocessed data using a wavelet transform than for raw
data. Such transformed datasets gave more parsimonious
models with smaller numbers of explanatory variables.

Concerning Model 2, it should be recalled that the
breed effect did not undergo feature selection; in this set-
ting, the minimum number of selected variables is 3. A
nonempty set of metabolites is still of predictive impor-
tance in addition to the breed effect. For Model 3, breed
and batch did not undergo selection; in this setting, the
minimum number of selected variables is 11. The num-
ber of selected variables (metabolites and interactions;
i.e., breed X metabolome and batch x metabolome) is less
when the batch variable is not considered. It is to be noted
that no interaction term between metabolite or wavelet
coefficients and breed (or batch) was selected in Model
2 (or in Model 3).

A few of the explanatory variables obtained for the
prediction of the LMP phenotype (Table 2) were the
same when using raw data (Model 1) as when using
Models 2 or 3. However, their number was significantly
reduced when the breed factor was taken into account
in Models 2 and 3 compared with Model 1. When using
the bootstrap process, some variables were either mostly
positively linked (PL; i.e., 6 4.05, 2.43, 2.15, 1.33, and
1.45 ppm), negatively linked (NL; i.e., 8 3.93, 3.20, 7.67,
2.51, and 0.99 ppm), or both NL and PL (& 1.03, 2.25,
and 1.47 ppm) to LMP (not shown). Only variables that
are steadily linked, either positively or negatively, such
as creatinine (6 4.05 ppm, PL), creatine (6 3.93 ppm,
NL), choline or phosphocholine or glycerophosphocho-
line (& 3.20 ppm, NL), glutamine (6 2.43 and 2.15 ppm,
PL), lactate (6 1.33 ppm, PL), alanine (6 1.45 ppm, PL),
and isoleucine (5 0.99 ppm, NL) can be considered for

the elaboration of the functional hypotheses that could
explain how the LMP phenotype can be predicted from
these serum biomarkers. Interestingly, as displayed in
Figure 5A, canonical analysis performed on all the vari-
ables present in the 2 datasets (i.e., 'H NMR and pheno-
type) demonstrated that the phenotypic variables belong-
ing to the classes C1 and C2 were also those that were
steadily selected in Models 1, 2, and 3. So, the positive
correlation underlined by the LASSO-based regression
between LMP and creatinine (6 4.05 ppm) or glutamine
(6 2.43 ppm) is again well evidenced, as is the negative
link between LMP and creatine detected at 6 3.93, 3.92,
and 3.03 ppm (Figure 5B). This significant correlation
between LMP and creatine is also well evidenced for
class 2 phenotypes such as ComLMP, DP, shW, hamW,
beW, and ADFI (Figure 5B). Citrate also would be found
as NL regressor of LMP when considering the chemical
shift at 6 2.51 ppm in Model 1 but would be found as PL
regressor of LMP if we consider the variable at 6 2.54
ppm. The 2D '"H-'H COSY and 'H-'3C HSQC NMR
spectra showed that signals at 2.51 and 2.54 ppm belong
to citrate. Indeed, HSQC NMR spectra showed corre-
lation between !3C chemical shift at 48.6 ppm and 'H
chemical shift at 2.51 and 2.54 ppm. Chemical shift at
0 2.51 and 2.54 ppm have been assigned to citrate and
correspond to a doublet even though the chemical signal
recorded at 6 2.54 ppm may contain also a low intensity
signal attributable to -alanine (correlation between the
signals at 3.17 and 2.54 ppm in the COSY spectrum) and
an unknown compound (correlation between the signals
at 2.39 and 2.54 ppm in the COSY spectrum). Quantita-
tive information measured at these 2 chemical shifts are
correlated (p = 0.35) and would be in favor of an assign-
ment to citrate even though the correlations with LMP
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are of different signs but based on different models in-
volving very different numbers of regressors (Table 2).

Reasoning at Constant BW

There was some variability in the development sta-
tus of the pigs included in the dataset, both at the time
of blood sampling and at the time of slaughter. To be
able to compare samples, the BW of the animal before
departure to the slaughterhouse (LWS) was added as a
covariable in the 3 models described previously. Then
the phenotype prediction could be considered as being
at constant weight. Focusing on the LMP phenotype, the
results obtained with these 3 modified models were sim-
ilar in nature to those presented previously; knowledge
of the breed improved the prediction of phenotype and
decreased the number of explanatory variables selected.
Moreover, the relation between LMP and the few vari-
ables referred to above (PL or NL) was preserved. More
precisely, the lists of important metabolites were larger
and included those already highlighted in the model
that did not take into account the animal BW. However,
the prediction power was slightly less when the BW at
slaughter time was considered (not shown).

DISCUSSION

In this article, we showed that it is possible to use
metabolomic data from a plasma sample to better pre-
dict some production phenotypes in growing pigs. Me-
tabolomic data alone are sufficient to predict these phe-
notypes. Additional information and predictive power
are provided by the metabolome when the breed of the
animal is known. For data from a test farm, small varia-
tions in a breeding environment, which are classically
summarized in a batch effect, did not disrupt phenotype
predictions. Additionally, although this work was cen-
tered on prediction accuracy, we supplied supplemen-
tary information on a limited number of metabolites that
have, as valuable biomarkers, a high predictive power.
The biological coherence of the list of biomarkers vali-
dated the whole data analysis. In addition, a method-
ological aspect of the statistical treatment was related to
the specificity of 'H NMR metabolomic data: a pretreat-
ment of the signal based on the use of wavelets.

Justification of the Statistical Treatment

Metabolomic profiles are continuous by essence.
Discretization is performed routinely (bucket steps). The
bucket size was rather large with 0.01 ppm, to avoid a
possible misalignment between spectra, due to shifts of
signals, a rather rare phenomenon but still occurring. Ac-
tually, small shifts at 2 to 3 regions of the spectrum re-
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corded in plasma samples were locally observed for some
samples that were reanalyzed with the same spectrom-
eter at 2 different times (not shown). This motivated the
choice of a relatively large bucket size (0.01 ppm) even
though a consequence is that some buckets could contain
more than 1 compound. However, the primary goal of this
work was prediction and not biological interpretation.

To recover the continuity of the signal, which is
moreover nonregular, we proposed the use of wavelet
decomposition, which is one of the most commonly
used signal transformation approaches. The underlying
idea is to decompose a complex signal into elementa-
ry forms (orthogonal functions or basis). Unlike Fou-
rier transformation, the wavelet approach is particularly
suited for uneven and chaotic signals, making it a meth-
od of choice for NMR profiles, and it has already been
applied in such a context by Davis et al. (2007) and Xia
et al. (2007). An improvement due to the use of wavelet
transformation was observed on our data but in a lim-
ited manner. Depending on the tissue (blood, urine, and
other) and the stability of the baseline on the spectra,
the wavelet approach could lead to a dramatic improve-
ment of the signal (P. Martin, P. Besse, and S. Déjean,
personal communication),; approximations of the signal
at the lowest levels (see Supplemental Material) correct
rough fluctuations of the baseline. Results depended
only slightly on the chosen wavelet basis in this study.
When the signal is continuous, Daubechies wavelets are
usually a better choice than Haar ones (step functions).
The dependency on the basis is generally observed (e.g.,
Luisier et al., 2005, for image denoising; Mahmoud et
al., 2007, for audio data).

Predictive Power: Valuable Aspects for All Phenotypes

An important methodological question arose before
the global prediction analysis concerning the choice
of preprocessing the 'H NMR metabolomic spectra.
When considering metabolomic data only as predictive
variables of highly functionally integrated phenotypic
variables, as shown here, the wavelet transformation of
original data led to best performances.

Adding information concerning the breed led to few-
er errors of prediction whereas adding batch information
did not really improve the prediction results. Moreover,
the batch even seemed to constitute a noisy endogenous
variable because the predictive power in Model 3 was
slightly less than in Model 2. Interestingly, in the breeding
conditions encountered here, this meant that we could put
aside the possible microenvironmental effect, which may
vary from batch to batch, for a phenotype prediction ob-
jective. The environmental effect on the phenotype, par-
ticularly diet variation, is probably captured by the me-
tabolomic information (Yde et al., 2010). Thus, given the
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fact that data are obtained in a control farm that ensures
standardized breeding conditions, some phenotypes of in-
terest such as LMP can be well predicted without having
to characterize more precisely the microenvironment of a
given batch of growing individuals. The same phenom-
enon seems to be encountered for the slight variations of
animal weight or age that were observed in the dataset;
the metabolome carries some information pertaining to
developmental differences so that the prediction of some
phenotypes such as LMP is better without the weight in-
formation than with it.

Yet this conclusion is based on a large dataset issued
from 3 breeds. Indeed, when similar analysis was under-
taken within a given breed, predictions of phenotypes
were disastrous (not shown). This can be explained by
the smaller number of observations and by less variabil-
ity of the within-breed phenotype.

Prediction Power among Phenotypes and
Practical Implications

The prediction accuracy is very dependent on the
phenotype being studied and surprisingly even within
a group of related phenotypes. Canonical analysis con-
firmed that the LASSO-based predictions and the same
4 classes of prediction of the different phenotypes were
identified. Two groups of phenotypes were poorly pre-
dicted (class C4 of prediction). They correspond to the
values of some weights (LWETP, LWS, and CWwtH)
that depend directly on the decision to send animals to the
slaughterhouse or not. Therefore, these phenotypes can
be considered as negative controls, because they should
be poorly predicted by essence and not worth predicting.
Meat quality measurements (pH, 4, L*, a*, b*, WHC, and
MQI) were poorly predicted possibly because meat qual-
ity is highly influenced by preslaughter conditions and
the blood sample was collected at the test farm during the
growing period between 60 and 70 kg BW. Indeed, pH is
known to be very sensitive to the duration of feed depra-
vation and transportation. Moreover, evidence of stress
conditions has been observed on NMR metabolomics in
pigs (Bertram et al., 2010) near slaughter or in sheep (Li et
al., 2011). Meat quality, even though it does not represent
a direct objective for the selection because it is difficult
to measure, could be potentially considered as a prime
objective if reliable predictions were available. Metabolo-
mic data from a single blood sample, taken approximately
3 wk before slaughter, are clearly not sufficient for such
an ambitious task for this complex trait.

Backfat measurements (BFsh, BFIr, BFhj, and their
average mBF) all showed a medium degree of predict-
ability (class 3 of prediction), potentially linked to the
dynamics of fat deposition during growth, which es-
sentially occurs after 70 kg BW. However, the metabo-
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lome-based prediction of these phenotypes is not crucial
because they are easily measured on the living animal.
Carcass length (Length) displayed also a limited predic-
tion level but is of no economic interest to date.

In the last groups of phenotypes, 1 phenotype with-
in each group was accurately predicted but the others
were not. Concerning traits recorded during growth
(ADG, FCR, and ADFI), we observed that ADFI was
better predicted than ADG and FCR separately. In-
dividual measurements of ADFI require specific and
expensive equipment and hence are performed rarely.
However, it represents a very important criterion from
an economic perspective and presents a moderate to ac-
ceptable level of prediction here. As regards carcass ef-
ficiency, DP was actually quite well predicted (class 2
of prediction) even though individual weights (CW and
LWS) were not. The lean meat content estimated from
cut weights (LMP) displayed the greatest prediction ac-
curacy (class 1 of prediction). The prediction of weights
for separate cuts varied from poor to acceptable but was
always worse than LMP. Lean meat content is a crucial
trait for breeders because it directly influences the pay-
ment for carcasses. Two measurements were available
and ComLMP and LMP are highly correlated. The lat-
ter measurement is time consuming and requires half
of a carcass for the cutting of the various pieces. The
LMP impacts the income of the breeder and the slaugh-
terhouse and displayed the highest predictability level
among the phenotypes considered here as well as among
those included in the current selection objective (i.e.,
MQIL, ADG, FCR, and LMP).

A Possible Biological Interpretation of
the Prediction Performance of Lean Meat Percentage

The purpose of this work was not to dissect the meta-
bolic mechanisms linked to the measured traits but to quan-
tify the power of prediction of NMR metabolomic spectra
for production and quality traits. Discussing biological as-
pects of the most predictive metabolites can be proposed
but only to check biological coherence of the whole statis-
tical process. Because of a risk of over-interpretation, we
chose to limit the discussion on that point. Thus, the results
described above can be validated considering the coher-
ent biological significance of the metabolites selected to
predict LMP. Indeed, a connection between the phenotype
LMP and some metabolites found in plasma has been high-
lighted. It involves 1) 3 AA: valine, alanine, and glutamine;
2) an energetic intermediate of the Krebs cycle, citrate;
3) an end metabolite of AA, creatinine, and its precursor
creatine; and 4) choline, a quaternary ammonium deriva-
tive, involved in the biosynthesis of the choline-containing
phospholipids, acetylcholine and betaine.

In Model 1, the LMP measured at slaughter is posi-
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tively linked to circulating creatinine and negatively linked
to creatine measured between 60 and 70 kg BW. Creatinine
is directly linked to the muscular mass and as such is cor-
related to the total AA catabolism in muscle, which may
depend on gender and hormonally based anabolic treat-
ment (Dumas et al., 2005). Interestingly, when no quali-
tative covariate such as breed (Model 2) or batch (Model
3) was used in the prediction model, creatine was found
in plasma as an independent variable negatively linked
to LMP. This may imply that the energetic requirements
needed to sustain muscular metabolism are adjusted in a
coordinated manner according to the relative potential to
increase muscle mass and result in different circulating
concentrations of creatine. When breed or batch covari-
ates are introduced in the models, creatine is not found as a
main independent variable. Probably, creatine as precursor
of phosphocreatine, this phosphagen represents the greater
part of the total P-bonded energy in muscle instantaneously
available to regenerate ATP (Hochachka, 1994; Brosnan
and Brosnan, 2007), is metabolized at different levels in
the different breeds because it seems to be linked to a final
LMP phenotype, which is strikingly differentiated between
breeds and probably between genders. Glutamine, detected
at 6 2.43 ppm, and lactate, detected at 6 1.33 ppm, also dis-
played a differential pattern of energy supply to muscle,
which was positively correlated to LMP between breeds
(and genders). Glutamine, as a functional AA is involved
in multiple metabolic pathways and regulates gene expres-
sion and signal transduction pathways (Wu, 2010; Wu et
al., 2011). Among its different physiological functions, it
is an important energy substrate, more particularly for rap-
idly dividing cells such as enterocytes. Within-breed (and
-gender) variations in LMP also are positively correlated
to citrate. As for phosphagen P-creatine, a greater potential
in muscle accretion seems to be coordinately sustained by
systemic bioenergetic adaptation observed at the level of
the citric acid cycle and lactate metabolism. Unfortunately,
complementary observations are lacking so it is difficult
to provide, at this stage, sound physiological interpreta-
tion concerning the relative involvement of factors related
either to the genetic background or to a gender-adjusted
physiology of such energetic homeostatic adjustments. In-
deed, there are here 2 confounded factors leading to LW or
LR castrates on one side and PI females on the other.
Because the data (raw, Haar transformed, or Daubechies
transformed) may have some influence on the selected me-
tabolites, we displayed on the mean spectrum the regions
corresponding to the selected variables, on the particular
case of Model 2 for the LMP phenotype as a matter of ex-
ample. These results showed that the use of raw data is the
best approach if one is interested in a biological interpreta-
tion whereas the preprocessing using the Daubechies basis
is overall the best approach in the case of prediction even
though its effect is not tremendous on our dataset. The pre-
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processing with the Haar basis appeared as a trade-off be-
tween the 2 goals: biological interpretation and phenotype
prediction.

The 3 approaches all pointed out the fine region of the
spectrum corresponding to creatinine (4.05 ppm). The se-
lected points of the raw data were included in the larger re-
gions pointed out by Daubechies, which displayed regions
too large to be interpretable.

The purpose of this article was to predict a phenotype
with NMR metabolomic profiles. This is different from an
analysis aiming at dissecting the phenotype and discover-
ing metabolites underlying the trait. We only proposed a
discussion on the selected metabolites (i.e., those with the
greatest predictive value) for the sake of biological coher-
ence. In this context, it is not a problem that the same me-
tabolites are selected for 2 highly correlated phenotypes.
This could be due (or not) to a common set of metabolic
mechanisms.

Metabolomic profiles are now relatively cheap. One
may use them in practice to obtain targeted metabolic infor-
mation for identified biomarkers or to predict phenotypes
of economic interest. Several samples could be considered
during an animal’s life, depending on the phenotypes de-
sired (i.e., linked to growth during the breeding period or
to meat quality near slaughter time). Generally speaking,
metabolomic-based prediction of production phenotypes
would be of practical interest in animal selection, especial-
ly when phenotypes cannot be measured directly on selec-
tion candidates because the measurements require slaugh-
ter (carcass efficiency traits or meat quality traits) or are too
expensive (feed efficiency). The current solution is to mea-
sure these traits on relatives of selection candidates, and this
information is used to predict the genetic value of the can-
didates. However, phenotypic measurements performed on
the animal itself rather than on its relatives would provide
more accurate predictions of the genetic value. If individual
meat quality traits could be predicted by accurate indirect
measures (based on metabolome profiles), selection would
be more efficient than when based on the performances of
relatives, which is, moreover, more expensive. The first re-
sults obtained in this study need further validation before
any practical use in selection schemes.

In conclusion, metabolomic data can be used to predict
a phenotype without any further knowledge of the individ-
ual. Nevertheless, this prediction ability is again improved
when the breed information is available as additional data.
For prediction purposes in general, a well-adapted method
of reducing noise in data coupled with a sparse prediction
approach is to be recommended. This is the first time to our
knowledge that breeding and production traits on growing
pig have been predicted on the basis of a single blood sam-
ple collected on the living animal during its breeding pe-
riod. The prediction accuracies varied considerably among
the traits, and some of them showed an accurate prediction.
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We are enthusiastic about the finding that some economi-
cally important traits can be predicted from a simple NMR
metabolomic profile obtained from blood.
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