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Standard SOM for multidimensional data [4]

Rd

picked observation

xi

x BMU

xneighbor prototype

x pf(xi)

representation

affectation

SOM grid

Cluster data (xi)i=1,...,n ∈ Rd on a grid made of U units and
equipped with a distance between units, d(u, u′)
Units have representers called prototypes (pu)u ∈ Rd

Clustering f : Rd → {1, . . . , U} and prototypes are updated itera-
tively in order to preserve the topology of the input space

1. affectation step: pick a data xi at random and find the best
matching unit: f(xi) := argminu=1,...,U ‖xi − pu‖2

2. representation step: update the BMU and its neighbors’ proto-
types with a stochastic gradient descent like scheme: pu ←
pu + µH(d(f(xi), u)) (xi − pu)

Extension of SOM to data described by a kernel / a dissimilarity
Data: (xi)i=1,...,n ∈ G described by pairwise relations with a kernel K ∈ Mn×n or a dissimilar-
ity ∆ ∈ Mn×n ⇒ stochastic kernel SOM [2] and stochastic relational SOM [6] implemented in
SOMbrero (R package)
Prototypes: linear convex combination of the data pu =

∑n
i=1 βuiφ(xi) (only (βui)u=1,...,U,i=1,...,n

are trained. φ is implicitely defined by the kernel/dissimilarity)
Updated steps:

1. affectation step writes f(xi) = argminu β
T
u Kβu − 2βT

u Ki (kernel SOM) or f(xi) =
argminu ∆iβu − 1

2β
T
u ∆βu (relational SOM)

2. representation step writes βu ← βu + µH(d(f(xi), u)) (1i − βu)

Mixing multiple kernels
Data are described by several pairwise rela-
tions (kernels/dissimilarities) K1, . . . , KD ⇒
Multiple kernel: K =

∑D
k=1 αkKk with αk ≥ 0

and
∑

k αk = 1

How to choose (αk)k?

Similarly to [8], add a stochastic gradient de-
scent step in SOM training:

3. multiple kernel tuning step
αk ← αk + νDki with Dki =∑

uH(d(f(xi), u))
(
Kk(xi, xi)− 2βT

u Kk
i

+βT
u Kkβu

)
(+ reduction & projection to

ensure the αk remain positive and sum to
1)

see [5] (multiple kernels) or [6] (multiple dis-
similarities)

Applications to graphs
Type of data that can be handled:

• graphs with node attributes (a kernel for the graph structure - e.g.,
Laplacian based kernels; kernels for each of the attributes)

• graphs with different types of edge (a kernel for each subgraph
defined by an edge type)

• both... and can also be used to combine different kernels with dif-
ferent parameters

Useful for:

• uncover communities...

• ... and visualize the relations between communnities

• as shown in [7], the result of the SOM can be combined with clus-
tering of the prototypes to obtain a simplified representation of a
graph

human metabolic network
from the BiGG database
http://bigg.ucsd.edu

An example (on simulated data)
Simulation of 8 groups of observations made from:

• unweighted graph (planted 3-partition
graph; see [1]) with two dense groups of
nodes: commute time kernel (L+ with L the
Laplacian; see [3])

• nodes are labelled with numeric data from a
2D Gaussian mixture: Gaussian kernel;

• ... and nodes are labelled with a factor (2-
levels): Gaussian kernel on 0/1 recoding.

Resulting Map Comparison
(100 datasets - NMI with true groups)
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