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Abstract

Big Data is one of the major challenges of statistical science and has numer-

ous consequences from algorithmic and theoretical viewpoints. Big Data always

involve massive data but they also often include online data and data het-

erogeneity. Recently some statistical methods have been adapted to process

Big Data, like linear regression models, clustering methods and bootstrapping

schemes. Based on decision trees combined with aggregation and bootstrap

ideas, random forests were introduced by Breiman in 2001. They are a powerful

nonparametric statistical method allowing to consider in a single and versatile

framework regression problems, as well as two-class and multi-class classification

problems. Focusing on classification problems, this paper proposes a selective

review of available proposals that deal with scaling random forests to Big Data

problems. These proposals rely on parallel environments or on online adapta-

tions of random forests. We also describe how the out-of-bag error is addressed
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in these methods. Then, we formulate various remarks for random forests in the

Big Data context. Finally, we experiment five variants on two massive datasets

(15 and 120 millions of observations), a simulated one as well as a real world

dataset. One variant relies on subsampling while three others are related to par-

allel implementations of random forests and involve either various adaptations

of bootstrap to Big Data or “divide-and-conquer” approaches. The fifth variant

is related to the online learning of random forests. These numerical experiments

lead to highlight the relative performance of the different variants, as well as

some of their limitations.

Key words: Random Forest, Big Data, Parallel Computing, Bag of Little

Bootstraps, On-line Learning

1. Introduction

1.1. Statistics in the Big Data world

Big Data is one of the major challenges of statistical science and a lot of

recent references start to think about the numerous consequences of this new

context from the algorithmic viewpoint and for the theoretical implications of5

this new framework [1, 2, 3]. Big Data always involve massive data: for instance,

Thusoo et al. [4] indicate that Facebook c© had more than 21PB of data in 2010.

They also often include data streams and data heterogeneity [5]. On a practical

point of view, they are characterized by the fact that data are frequently not

structured data, properly indexed in a database. Thus, simple queries cannot10

be easily performed on such data. These features lead to the famous three Vs

(Volume, Velocity and Variety) highlighted by the Gartner, Inc., the advisory

company about information technology research 1, now often augmented with

other Vs [6]. In the most extreme situations, data can even have a size too

large to fit in a single computer memory. Then data are distributed among15

1 http://blogs.gartner.com/doug-laney/files/2012/01/

ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

2
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several computers. In this case, the distribution of the data is managed using

specific frameworks dedicated to shared storage computing environments, such

as Hadoop2.

For statistical science, the problem posed by this large amount of data is

twofold: first, as many statistical procedures have devoted few attention to20

computational runtimes, they can take too long to provide results in an ac-

ceptable time. When dealing with complex tasks, such as learning a prediction

model or performing a complex exploratory analysis, this issue can occur even

if the dataset would be considered of a moderate size for other simpler tasks.

Also, as pointed out in [7], the notion of Big Data depends itself on the available25

computing resources. This is especially true when relying on the free statistical

software R [8], massively used in the statistical community, which capabilities

are strictly limited by RAM. In this case, data can be considered as “large” if

their size exceeds 20% of RAM and as “massive” if it exceeds 50% of RAM,

because this amount of data strongly limits the available memory for learning30

the statistical model itself. For memory demanding statistical methods and im-

plementations, the RAM can even be overloaded with datasets occupying a very

moderate amount of the RAM. As pointed out in [3], in the near future, statis-

tics will have to deal with problems of scale and computational complexity to

remain relevant. In particular, the collaboration between statisticians and com-35

puter scientists is needed to control runtimes that will maintain the statistical

procedures usable on large-scale data while ensuring good statistical properties.

1.2. Main approaches to scale statistical methods

Recently, some statistical methods have been adapted to process Big

Data, including linear regression models, clustering methods and bootstrapping40

2Hadoop, http://hadoop.apache.org is a software environment programmed in Java,

which contains a file system for distributed architectures (HDFS: Hadoop Distributed File

System) and dedicated programs for data analysis in parallel environments. It has been de-

veloped from GoogleFS, The Google File System.

3
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schemes [9, 10]. The main proposed strategies are based on i) subsampling, ii)

divide and conquer approach, iii) algorithm weakening and iv) online processing.

Subsampling is probably the simplest way to handle large datasets. It is

proved efficient to approximate spectral analysis of large matrices using an ap-

proximate decomposition, such as the Nyström algorithm [11]. It is also a45

valuable strategy to produce approximate an bootstrap scheme [12]. A simple

random sampling often produces a representative enough subsample but can be

hard to obtain if data are distributed over different computers and if the sub-

sample itself has to be built in parallel: online subsampling strategies allowing

stratified sampling are presented in [13] and can overcome this problem. Im-50

proved subsampling strategies can also be designed, like the core-set strategy

used for clustering problems in [14], which extracts a relevant small set of points

to perform an approximate clustering efficiently. Finally, an alternative to al-

leviate the impact of the subsampling without the need to use sophisticated

subsampling schemes is to perform several subsamplings and to combine the55

different results [15].

The divide and conquer approach proceeds by splitting the problem into

several smaller problems and by gathering the different results in a final step.

This approach is the one followed in the popular MapReduce programming

paradigm [16]. Most of the time, the combination is based on a simple aggrega-60

tion or averaging of the different results but this simple method might lead to

biased estimations in some statistical models, as simple as a linear model. The

solutions include re-weighting the different results [17].

The algorithm weakening is a very different approach, designed for methods

based on convex optimization problems [18]. This method explicitly treats the65

trade-off between computational time and statistical accuracy using a hierarchy

of relaxed optimization problems with an increasing complexity.

Finally, the online approaches update the results with sequential steps, each

having a low computational cost. It very often requires a specific rewriting of

the method to single out the specific contribution of a given observation to the70

method. In this case, the online update is strictly equivalent to the processing
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of the whole dataset but with a reduced computational time [19]. However, in

most cases, such an equivalence can not be obtained and a modification of the

original method is needed to allow online updates [20].

It has to be noted that only a few papers really address the question of the75

difference between the “small data” standard framework compared to the Big

Data in terms of statistical accuracy when approximate versions of the original

approach are used to deal with the large sample size. Noticeable exceptions

are the article of Kleiner et al. [12] who prove that their “Bag of Little Boot-

straps” method is statistically equivalent to the standard bootstrap, the article80

of Chen and Xie [17] who demonstrate asymptotic equivalence of their “divide-

and-conquer” based estimator with the estimator based on all data in the setting

of linear regression and the article of Yan et al. [11] who show that the mis-

clustering rate of their subsampling approach, compared to what would have

been obtained with a direct approach on the whole dataset, converges to zero85

when the subsample size grows (in an unsupervised setting).

1.3. Random forests and Big Data

Based on decision trees and combined with aggregation and bootstrap ideas,

random forests (abbreviated RF in the sequel), were introduced by Breiman

[21]. They are a powerful nonparametric statistical method allowing to consider90

regression problems as well as two-class and multi-class classification problems,

in a single and versatile framework. The consistency of RF has recently been

proved by Scornet et al. [22], to cite the most recent result. On a practical point

of view, RF are widely used [23, 24] and exhibit extremely high performance with

only a few parameters to tune. Since RF are based on the definition of several95

independent trees, it is thus straightforward to obtain a parallel and faster

implementation of the RF method, in which many trees are built in parallel on

different cores. However, direct parallel training of the trees might be intractable

in practice, due to the large size of the bootstrap samples. As RF also include

intensive resampling, it is natural to consider adapted bootstrapping schemes100

for the massive online context, in addition to parallel processing.
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Even if the method has already been adapted and implemented to handle

Big Data in various distributed environments (see, for instance, the libraries

Mahout 3 or MLib, the latter for the distributed framework Spark4, among oth-

ers), a lot of questions remain open. In this paper, we do not seek to make an105

exhaustive description of the various implementations of RF in scalable envi-

ronments but we will highlight some problems posed to RF by the Big Data

framework, describe several standard strategies that can be used and discuss

their main features, drawbacks and differences with the original approach. We

finally experiment five variants on two massive datasets (15 and 120 millions110

of observations), a simulated one as well as a real world dataset. One variant

relies on subsampling while three others are related to parallel implementations

of random forests and involve either various adaptations of bootstrap to Big

Data or “divide-and-conquer” approaches. The fifth variant relates to the on-

line learning of RF. To the best of our knowledge, no weakening strategy has115

been developed for RF.

Since the free statistical software R [8] is de facto the esperanto in the sta-

tistical community, and since the most flexible and widely used programs for

designing random forests are also available in R, we have adopted it for numerical

experiments as much as possible. More precisely, the R package randomForest,120

implementing the original RF algorithm using Breiman and Cutler’s Fortran

code, contains many options together with a detailed documentation. It has

then been used in almost all the experiments. The only exception is for online

RF for which no implementation in R is available. A python library was used,

as an alternative tool in order to provide a comparison of the online learning125

with the alternative Big Data variants.

The paper is organized as follows. After this introduction, we briefly recall

some basic facts about RF in Section 2. Then, Section 3 is focused on strategies

for scaling random forests to Big Data: some proposals about RF in parallel

3https://mahout.apache.org
4https://spark.apache.org/mllib
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environments are reviewed, as well as a description of the online strategies. The130

section includes a comparison of the features of every method and a discussion

about the estimation of the out-of-bag error. Section 4 is devoted to numerical

experiments on two massive datasets, an extensive study on a simulated one and

an application to real world data. Finally, Section 5 collects some conclusions

and discusses two open perspectives.135

2. Random Forests

Denoting by L = {(x1, y1), . . . , (xn, yn)} a learning set of independent ob-

servations of the random vector (X,Y ), we distinguish X = (X1, ..., Xp) where

X ∈ Rp is the vector of the predictors (or explanatory variables) from Y ∈ Y the

explained variable, where Y is either a class label for classification problems or140

a numerical response for regression ones. A classifier s is a mapping s : Rp → Y
while the regression function appears naturally to be the function s when we

suppose that Y = s(X) + ε with E[ε|X] = 0. RF provide estimators of either

the Bayes classifier, which minimizes the classification error P (Y 6= s(X)), or of

the regression function [25, 26]. RF are a learning method for classification and145

regression based on the CART (Classification and Regression Trees) method

defined by Breiman et al. [27]. The left part of Figure 1 provides an example of

a classification tree. Such a tree allows to predict the class label corresponding

to a given x-value by simply starting from the root of the tree (at the top of the

left part of the figure) and by answering the questions, all being a comparison of150

a single variable in X to a given threshold, until a leaf is reached. The predicted

class is then the value labeling the leaf. Such a tree is a classifier s, which allows

to predict a y-value for any given x-value. This classifier is the function which

is piecewise constant on the partition described in the right part of Figure 1.

Note that splits are parallel to the axes defined by the original variables leading155

to an additive model.

The growing of CART is performed iteratively starting from the root of the

tree. The split of a given node is defined by the choice of one variable in X and
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C4

C3
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Figure 1: Left: a classification tree allowing to predict the class label corresponding to a given

x-value. Right: the associated partition of the predictor space.

of one threshold value in the range of this variable that provide the greatest

homogeneity in terms of Y value to child nodes. The decision associated to a160

given leaf is either the average value of Y for the observations in the training

set associated to this leaf (regression case) or the most common value of Y

(classification case).

While CART is a well-known way to design optimal single trees by per-

forming first a growing step and then a pruning one, the principle of RF is165

to aggregate many binary decision trees obtained by two random perturbation

mechanisms: the use of bootstrap samples (obtained by randomly selecting n

observations with replacement from the learning set L) instead of the whole

sample L and the construction of a randomized tree predictor instead of CART

on each bootstrap sample. For regression problems, the aggregation step in-170

volves averaging individual tree predictions, while for classification problems,

it involves performing a majority vote among individual tree predictions. The

construction is summarized in Figure 2. The standard method will be denoted

by seqRF in the sequel.
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seqRF (standard RF)

t1

t2

tQ

RF = ∪Q
l=1tl

Q bootstrap samples

trees

aggregate trees

Figure 2: RF construction scheme: starting from the dataset (left of the figure), generate

bootstrap samples (by randomly selecting n observations with replacement from the learning

set L) and learn corresponding randomized binary decision trees. Finally aggregate them.
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However, trees in RF have two main differences with respect to CART trees:175

first, in the growing step, at each node, a fixed number of input variables are

randomly chosen and the best split is calculated only among them, and secondly,

no pruning is performed.

In the next section, we will explain that most proposals made to adapt RF to

Big Data often consider the original RF proposed by Breiman as an object that180

simply has to be mimicked in the Big Data context. Later in this article, we

will see that alternatives to this vision are possible. Some of these alternatives

rely on other ways to re-sample the data and others are based on variants in

the construction of the trees.

We will concentrate on the prediction performance of RF, focusing on the185

out-of-bag (OOB) error. Notations used in this section are given in Table 1.

For each tree t of the forest, OOBt is the associated OOB sample (composed

of data not included in the bootstrap sample used to construct t) and, in the

classification case, the OOB error rate of the forest is defined by:

errForest =
1

n
Card {i ∈ {1, . . . , n} | yi 6= ŷi} , (1)

where ŷi is the most frequent label predicted by trees t for which observation i190

is in OOBt.
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notation used for

n number of observations in the dataset

Q number of trees in the RF classifier

t a tree in the RF classifier

OOBt set of observations out-of-bag for the tree t

errTreet misclassification rate for observations in OOBt made by t˜errTree
j

t misclassification rate for observations OOB for t

after a random permutations of values of Xj

ŷi OOB prediction of observation xi

(aggregation of predictions made by trees t such that i ∈ OOBt)

errForest OOB misclassification rate for the RF classifier

VI(Xj) variable importance of Xj

Table 1: Notations used in Section 2.

The OOB error is also used to quantify the variable importance (VI in the

sequel), which is crucial for many procedures involving RF, e.g., for ranking the

variables before a stepwise variable selection strategy (see [28]). More precisely,

if errTreet is the error (misclassification rate for classification) of tree t on its195

associated OOBt sample, the variable importance is obtained by randomly per-

muting the values of Xj in OOBt. A perturbed sample is obtained for which

the error of tree t can be computed, ˜errTreet
j
. The variable importance of Xj

is then equal to:

VI(Xj) =
1

Q

∑
t

( ˜errTreet
j − errTreet),

where the sum is over all trees t of the RF and Q denotes the number of trees.200

3. Scaling random forests to Big Data

This section discusses the different strategies that can be used to scale RF

to Big Data. These strategies differ from the original method, seqRF, at two

different levels. The first difference stands in the implementation, that can

be either sequential, using only one computational process (as in the original205
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method), or parallel. The direct implementation of RF in parallel is denoted

by parRF but is very limited if the sample size is large because it requires

to handle parallel several bootstrap samples of the same size than the original

dataset. Thus, variants of the bootstrap step are also introduced. The first and

the most simple approach to reduce the bootstrap sample size is subsampling,210

denoted by sampRF in the sequel, that can be combined either with sequen-

tial or parallel implementations. Alternatively, three other variants rely on a

parallel implementation of RF (moonRF, blbRF and dacRF) and include an

adaptation of the bootstrapping scheme to Big Data or a divide-and-conquer

approach. Finally, a different (and not equivalent) approach based on the online215

processing of data is also described, onRF. This method adapts the bootstrap-

ping scheme and the growing step of the trees to allow online learning and is

naturally designed to be run sequentially.

The names of the different methods, the references to the sections in which

they are discussed and their main features are summarized in Table 2.220
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name described in bootstrapping method parallel computing

seqRF 2 standard bootstrap no

sequential RF

parRF 3.2 standard bootstrap yes

parallel computation of RF

sampRF 3.1 subsampling + can be

sampling RF standard bootstrap but not critical

moonRF 3.2.1 m-out-of-n bootstrap yes

m-out-of-n RF

blbRF 3.2.1 Big Data bootstrap yes

Bag of Little bootstraps RF

dacRF 3.2.2 splitting + yes

Divide-and-conquer bootstrap standard bootstrap

onRF 3.3 online bootstrap no

online RF

Table 2: Names, references and main features of the different variants of RF described in this

article.

In addition, the section will use the following notations: RF will denote the

random forest method (in a generic sense) or the final random forest classifier

itself, obtained from the various approaches described in this section. The

number of trees in the final classifier RF is denoted by Q, n is the number

of observations of the original dataset and, when a subsample is taken in this225

dataset (either with or without replacement), it is denoted by τl (l identifies

the subsample when several subsamples are used). Its size is usually denoted

by m. When different processes are run in parallel, the number of processes is

denoted by K. Depending on the method, this can lead to learn smaller RF

with q < Q trees that are denoted by RF
(q)
l , in which l is an index that identifies230

the smaller RF. The notation ∪Kl=1RF
(q)
l will be used for the classifier obtained

from the aggregation of K smaller RF with q trees each into a RF with qK

trees. Similarly, tl denotes a tree, identified by the index l and ∪ql=1tl denotes

the RF obtained from the aggregation of the q trees t1, . . . , tq. The additional

13



notations used in this section are summarized in Table 3.235

notation used for

τl subsample of the observations in the dataset

m number of observations in subsamples

RF final random forest classifier

Q number of trees in the final random forest classifier

K number of processes run in parallel

q number of trees in intermediate (smaller) random forests

RF
(q)
l RF number l with q trees

∪K
l=1RF

(q)
l aggregation of K RF with q trees in a single classifier

tl tree identified by the index l

∪q
l=1tl aggregation of q trees in an RF classifier

Table 3: Notations used in Section 3.

3.1. Sub-sampling RF (sampRF)

Meng [13] points the fact that using all data is probably not required to

obtain accurate estimations in learning methods and that sampling approaches

is an important and reliable way to deal with Big Data. The simple idea behind

sampling is to subsample m observations out of n without replacement in the240

original sample (with m� n) and to use the original algorithm (either seqRF

or the parallel implementation, parRF, described in Section 3.2) to process this

subsample. This method is illustrated in Figure 3.
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sampRF

RF

sub-sampling
(without replacement)

use seqRF or parRF

Figure 3: Sub-sampling RF (sampRF): m observations out of n are randomly selected without

replacement and the original RF algorithm (seqRF) or its parallel version (parRF) described

in Section 3.2 are used to obtain a final RF with Q trees. The difference with the standard

seqRF is underlined and highlighted in pink.

Subsampling is a natural method for statisticians and it is appealing since it

strongly reduces memory usage and computational efforts. However, it can lead245

to serious biases if the subsample is not carefully designed. More precisely, the

need to control the representativeness of the subsampling is crucial. Random

subsampling is usually adequate for such tasks, providing the fact that the

sampling fraction is large enough. However, in the Big Data world, datasets are

frequently not structured and indexed. In this situation, random subsampling250

can be a difficult task [13].

Section 4 provides various insights on the efficiency of subsampling, on the

effect of the sampling fraction and on the representativeness of the subsample on

the accuracy of the obtained classifier. The next section investigates approaches

which try to make use of a wider proportion of observations in the dataset using255

efficient computational strategies.

3.2. Parallel implementations of random forests

As pointed in the introduction, RF offer a natural framework for handling

Big Data. Since the method relies on bootstrapping and on the independent

15



construction of many trees, it is naturally suited for parallel computation. In-260

stead of building all Q bootstrap samples and trees sequentially as in seqRF,

bootstrap samples and trees (or sets of a small number of bootstrap samples

and trees) can be built in parallel. In the sequel, we will denote by parRF

the approach in which the Q trees of a RF are processed in parallel. seqRF

and parRF implementations are illustrated in Figure 4 (left and right, respec-265

tively). Using the parRF approach, one can hope for a computational time

factor decrease of approximately K between seqRF and parRF.

parRF

t1

t2

tQ

RF = ∪Q
l=1tl

Q bootstrap samples

trees in parallel

aggregate trees

Figure 4: Sequential (left) and parallel (right) implementations of the standard RF algorithm.

RF is the final random forest with Q trees. parRF builds Q trees in parallel. The difference

in parRF compared to the standard seqRF is underlined and highlighted in pink.

However, as pointed in [12], since the expected size of a bootstrap sample

built from {1, . . . , n} is approximately 0.63n, the need to process hundreds of

such samples in parallel is hardly feasible in practice when n is very large.270

Moreover, in the original algorithm from [21], the trees that composed the RF

are fully developed trees, which means that the trees are grown until every

16



terminal node (leaf) is perfectly homogeneous regarding the values of Y for

the observations that fall in this node. When n is large, and especially in

the regression case, this leads to very deep trees which are all computationally275

very expensive and memory demanding. They can even be difficult to use for

prediction purpose. However, as far as we know, no study addresses the question

of the impact of controlling and/or tuning the maximum number of nodes in

the RF trees.

The next subsection presents alternative solutions to address the issue of280

large size bootstrap samples while relying on the natural parallel background of

RF. More precisely, we will discuss alternative bootstrap schemes for RF (m-

out-of-n bootstrap RF, moonRF, and Bag of Little Bootstraps RF, blbRF)

and a divide-and-conquer approach, dacRF. A last subsection will describe and

comment on the mismatches of each of these approaches with the standard RF285

method, seqRF or parRF.

3.2.1. Alternative bootstrap schemes for RF (moonRF and blbRF)

To avoid selecting only some of the observations in the original big dataset,

as it is done in sampRF (Figure 3), some authors have focused on alternative

bootstrap schemes aiming at reducing the number of different observations of290

each bootstrap samples. [29] propose the m-out-of-n bootstrap that proceeds by

building bootstrap samples with only m observations taken without replacement

in {1, . . . , n} (for m� n). This method is illustrated in Figure 5.

17



moonRF

t1

t2

tQ

RF = ∪Q
l=1tl

Q samples (without replacement)

trees in parallel

aggregate trees

Figure 5: m-out-of-n RF (moonRF): Q samples without replacement, with m observations

out of n, are randomly built in parallel and a tree is learned from each of these samples.

The Q trees are then aggregated to obtain a final RF with Q trees. The differences with the

standard seqRF are highlighted in pink.

Initially designed to address the computational burden of standard boot-

strapping, the method performance is strongly dependent on a convenient choice295

of m and the data-driven scheme proposed in [30] for the selection of m requires

to test several different values of m and eliminates computational gains.

More recently, an alternative to m-out-of-n bootstrap called “Bag of Little

Bootstraps” (BLB) has been described in [12]. This method aims at building

bootstrap samples of size n, each one containing only m� n different observa-300

tions. The size of the bootstrap sample is the classical one (n), thus avoiding the

problem of the bias involved by m-out-of-n bootstrap methods. The approach

is illustrated in Figure 6.

18



blbRF

RF
(q)
1

RF
(q)
2

RF
(q)
K

RF = ∪K
l=1RF

(q)
l

K samples (without replacement)

oversampling
(with replacement)

forests with q trees
in parallel aggregate forests

τK

τ2

τ1

Figure 6: Bag of Little Bootstraps RF (blbRF). In this method, a subsampling step, per-

formed K times in parallel, is followed by an oversampling step which aims at building q trees

for each subsample, all obtained from a bootstrap sample of size n of the original data. All

the trees are then gathered into a final random forest, RF. The differences with the standard

seqRF are underlined and highlighted in pink.

It proceeds by two steps: in a first step, K subsamples, (τl)l=1,...,K , are ob-

tained, with m observations each, that are taken randomly without replacement305

from the original observations. In a second step, each of these subsamples is

used to obtain a forest, RF
(q)
l with q = Q

K trees. But instead of taking bootstrap

samples from τl, the method uses over-sampling and, for all i ∈ τl, computes

weights, nli, from a multinomial distribution with parameters n and 1
m1m, where

1m is a vector with m entries equal to 1. These weights satisfy
∑
i∈τl n

l
i = n310

and a bootstrap sample of the original dataset is thus obtained by using nli

times each observation i in τl. For each τl, q such bootstrap samples are built

to learn q trees. These trees are aggregated in a random forest RF
(q)
l . Finally,

all these (intermediate) random forests with q trees are gathered together in a

RF with Q = qK trees. The processing of this method is thus simplified by a315

smart weighting scheme and is manageable even for a very large n because all

bootstrap samples contain only a small number (at most m) of unique observa-
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tions from the original dataset. The number m is typically of the order nγ for

γ ∈ [0.5, 1], which can be very small compared to the typical number of unique

observations (about 0.63n) of a standard bootstrap sample. Interestingly, this320

approach is well supported by theoretical results because the authors of [12]

prove its equivalence with the standard bootstrap method.

3.2.2. Divide-and-conquer RF (dacRF)

A standard alternative to deal with massive datasets while not using subsam-

pling is to rely on a “divide-and-conquer” strategy. The large problem is divided325

into simpler subproblems and the solutions are aggregated together to solve the

original problem. The approach is illustrated in Figure 7: the data are split into

small sub-samples, or chunks, of data, (xi, yi)i∈τl , with ∪lτl = {1, . . . , n} and

τl ∩ τl′ = ∅.

dacRF

RF
(q)
1

RF
(q)
2

RF
(q)
K

RF = ∪K
l=1RF

(q)
l

partition into K samples

forests with q trees in parallel

aggregate forests

τK

τ2

τ1

Figure 7: divide-and-conquer RF (dacRF). In this method, the original dataset is partitioned

into K subsets. A random forest with q trees is built from each of the subsets and all the

forests are finally aggregated in a final random forest, RF. The differences with the standard

seqRF are underlined and highlighted in pink.
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Each of these data chunks is processed in parallel and yields to the learning330

of an intermediate RF having a reduced number of trees. Finally, all these

sub-forests are simply aggregated together to define the final RF.

As indicated in [31], this approach is the standard MapReduce version of

RF, implemented in the ApacheTM library Mahout. MapReduce is a method

that proceeds by two steps: in a first step, called the Map step, the dataset335

is split into several smaller chunks of data, (xi, yi)i∈τk , with ∪kτk = {1, . . . , n}
and τk ∩ τk′ = ∅, each one being processed by a separate core. These different

Map jobs are independent and produce a list of couples of the form (key, value),

where “key” is a key indexing the data that are contained in “value”. In the

RF case, the output key is always equal to 1 and the output value is the sub-340

forest learned from the corresponding chunk. Then, in a second step, called

the Reduce step, each reduce job proceeds all the outputs of the Map jobs that

correspond to a given key value. This step is skipped in the RF case since the

output of the different Map jobs are simply aggregated together to produce the

final RF. The MapReduce paradigm takes advantage of the locality of data to345

speed the computation. Each Map job usually processes the data stored in a

close proximity to its computational unit. As discussed in the next section and

illustrated in Section 4.4, this can yield to biases in the resulting RF.

3.2.3. Mismatches with original RF

In this section, we want to stress the differences between the previously350

proposed parallel solutions and the original algorithm. Two methods will be

said “equivalent” when they would provide similar results when used on a given

dataset, up to the randomness in bootstrap sampling. For instance, seqRF

and parRF are equivalent since the only difference between the two methods

is the sequential or parallel learning of the trees. sampRF and dacRF are not355

equivalent to seqRF and are both strongly dependent on the representativeness

of the dataset. This is the standard issue encountered in survey approaches for

sampRF but it is also a serious limitation of dacRF despite the fact that this

method uses all observations. Indeed, if data are thrown in the different chunks
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with no control on the representativeness of the subsamples, data chunks might360

well be specific enough to produce very heterogeneous sub-forests: there would

be no meaning in simply averaging all those trees together to make a global

prediction. This is especially an issue when using the standard MapReduce

paradigm since, as noted by Laptev et al. [15], data are rarely ordered randomly

in the Big Data world. On the contrary, items are rather clustered on some365

particular attributes and are often placed next to each other on disk. In this

situation, the data locality property of MapReduce thus leads to very biased

data chunks.

Moreover, as pointed out by Kleiner et al. [12], another limitation of sam-

pRF and of dacRF, but also of moonRF, comes from the fact that each tree370

is built from a bootstrap sample of size m. The success of m-out-of-n bootstrap

samples is highly conditioned by the choice of m: [29] reports results for m of

order O(n) for successful m-out-of-n bootstrap. Bag of Little Bootstraps is an

appealing alternative since the bootstrap sample size is the standard one (n).

Moreover, in a different framework, [12] demonstrates a consistency result of375

the standard bootstrap estimation for m = O(
√
n) and K ∼ n

m (when n tends

to +∞).

In addition, some important features of all these approaches are summarized

in Table 4. A desirable property for a high computational efficiency is that the

number of different observations in the bootstrap samples is as small as possible.380
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can be computed bootstrap expected nb of

in parallel sample size 6= obs. in

bootstrap samples

seqRF yes n 0.63n

parRF (parRF)

sampRF yes but m 0.63m

not critical

moonRF yes m m

blbRF yes n m
[
1−

(
m−1
m

)n]
dacRF yes n

K 0.63 n
K

Table 4: Summary of the main features in the variants of the random forest algorithm (ex-

cluding online RF, onRF).

3.2.4. Out-of-bag error and variable importance measure

The OOB error and the VI are important diagnostic tools to help the user

understand the RF accuracy and to perform variable selection. However, these

quantities may be unavailable directly (or in a standard manner) in the RF

variants described in the previous sections. This comes from the fact that sam-385

pRF, moonRF and blbRF use a prior subsampling step of m observations.

The RF (or the subforests) based on this subsample has (have) not a direct ac-

cess to the remaining n−m observations that are always out-of-bag and should,

in theory, be considered for the OOB computation. In general, the OOB error

(and thus VI) cannot be obtained directly while the RF is trained. A similar390

problem occurs for dacRF in which all sub-forests based on a given chunk of

data are unaware of data in the other chunks. In dacRF, it can even be memory

costly to record which data have been used in each chunk to obtain OOB after-

wards. Moreover, even in the case where this information is available, all RF

alternatives presented in the previous sections, sampRF, moonRF, blbRF395

and dacRF, require to obtain the predictions for approximately n − rm OOB

observations (with r = 0.63 for sampRF and dacRF, r = 1 for moonRF
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and r = 1−
(
m−1
m

)n
for blbRF) for all trees, which can be a computationally

extensive task.

In this section, we present a first approximation of the OOB error that can400

naturally be designed for sampRF and dacRF, and a second approximation

for moonRF and blbRF. The additional notations used in this section are

summarized in Table 5.

notation used for

K number of subsamples

(equivalent to the number of processes run in parallel here)

q number of trees in intermediate (smaller) random forests

ŷli OOB prediction for observation i ∈ τl by forest obtained from τl

errForestl OOB error of RF
(q)
l restricted to τl

ŷ−l
i prediction for observation i ∈ τl by forests (RF

(q)

l′ )l′ 6=l

BDerrForest approximation of OOB in sampRF, blbRF, moonRF and dacRF

Table 5: Notations used in Section 3.2.4.

OOB error approximation for sampRF and dacRF. As previously, (τl)l=1,...,K

denote the subsamples of data, each of size m, used to build independent sub-405

forests in parallel (with K = 1 for sampRF). Using each of these samples, a

sub-forest with Q (sampRF) or q = Q
K (dacRF) trees is defined, for which

an OOB prediction, restricted to observations in τl, can be calculated: ŷli is

obtained by a majority vote on the trees of the sub-forest built from a bootstrap

sample of τl for which i is OOB.410

An approximation of the OOB error of the sub-forest learned from sample

τl can thus be obtained with errForestl = 1
mCard

{
i ∈ τl|yi 6= ŷli

}
. This yields

to the following approximation of the global OOB error of RF:

BDerrForest =
1

n

K∑
l=1

m× errForestl

for dacRF or simply BDerrForest = errForest1 for sampRF.
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OOB error approximation for moonRF and blbRF. For moonRF, since sam-415

ples are obtained without replacement, there are no OOB observations associ-

ated with a tree. However we can compute an OOB error as in standard RF,

restricted to the set ∪Ql=1τl of observations that have been sampled in at least

one of the subsamples τl. This leads to obtain an approximation of the OOB

error, BDerrForest, based on the prediction of approximately (Q − 1)m obser-420

vations (up to the few observations that belong to several subsamples, which is

very small if m � n) that are OOB for each of the Q trees. This corresponds

to an important computational gain as compared to the standard OOB error

that would have required the prediction of approximately n −m observations

for each tree.425

For blbRF, a similar OOB error approximation can be computed using

∪Kl=1τl. Indeed, since trees are built on samples of size n obtained with replace-

ment from τl (having a size equal to m), and provided that m� n, there are no

OOB observations associated to the trees with high probability. Again assum-

ing that no observation belong to several subsamples τl, the OOB prediction430

of an observation in τl can be approximated by a majority vote law based on

the predictions made by sub-forests (RF
(q)
l′ )l′ 6=l. If this prediction is denoted by

ŷ−li , then the following approximation of the OOB error can be derived:

BDerrForest =
1

Km

K∑
l=1

Card
{
i ∈ τl | yi 6= ŷi

−l
}
.

Again, for each tree, the number of predictions to make to compute this error

is (K− 1)m, which is small compared to the n−m predictions that would have435

been needed to compute the standard OOB error.

Similar approximations can also be defined for VI (not investigated in this

paper for the sake of simplicity).

3.3. Online random forests

The general idea of online RF (onRF), introduced by Saffari et al. [20],440

is to adapt RF methodology, in order to handle the case where data arrive

sequentially. An online framework supposes that, at a given time step, one does
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not have access to all the data from the past, but only to the current observation.

onRF are first defined in [20] and detailed only for classification problems.

They combine the idea of online bagging, also called Poisson bootstrap, from445

[32, 33, 34], Extremely Randomized Trees (ERT) from [35], and a mechanism

to update the RF each time a new observation arrives.

More precisely, when a new sample arrives, the online bagging updates k

times a given tree, where k is sampled from a Poisson distribution: this means

that this new observation will appear k times in the tree, which mimics the fact450

that one observation can be drawn k times in the batch bootstrap sampling

(with replacement). ERT is used instead of the original Breiman’s RF, because

it allows for a faster update of the RF: in ERT, S splits (i.e., a split variable and

a split value) are randomly drawn for every node, and the final split is optimized

only among those S candidate splits. Moreover, all decisions given by a tree are455

only based on the proportions of each class label among observations in a node.

onRF keeps an heterogeneity measure based on these proportions up-to-date

in an online manner. This measure is used to determine the class label of a

node. When a node is created, S candidate splits (hence 2S candidate new

nodes) are randomly drawn and when a new observation arrives in an existing460

node, this measure is updated for all those 2S candidate nodes. This mechanism

is repeated until a stopping condition is realized and the final split minimizes

the heterogeneity measure among the S candidate splits. The process is then

iterated for the next nodes.

From the theoretical point of view, the recent article [36] introduces a new465

variant of onRF. The two main differences with the original onRF are that,

1) no online bootstrap is performed, and 2) each point is assigned to one of

two possible streams at random with fixed probability. The data stream is then

randomly partitioned into two streams: the structure stream and the estimation

stream. Data from the structure stream only participate on the splits optimiza-470

tion, while data from the estimation stream are only used to allocate a class

label to a node. Thanks to this partition, the authors manage to obtain con-

sistency results of onRF. The approach is implemented in the python library
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RFTK5, used in experiments of Section 4.5.

[20] also describes an online estimation of the OOB error: since a given475

observation is OOB for all trees for which the Poisson random variable used to

replicate the observation in the tree is equal to 0, the prediction provided for

such a tree t is used to update errTreet. However, since the prediction cannot

be re-evaluated after the tree has been updated with next data, this approach

is only an approximation of the original errTreet. Moreover, as far as we know,480

this approximation is not implemented in the python library RFTK. Finally,

permuting the values of a given variable when the observations are processed

online and are not stored after they have been processed is still an open issue

for which [20, 36] give no solution. Hence, VI cannot be simply defined in this

framework.485

4. Experiments

The present section is devoted to numerical experiments on a massive simu-

lated dataset (15 millions of observations) as well as a on real world dataset (120

millions of observations). These simulations aim at illustrating and comparing

the five variants of RF for Big Data introduced in Section 3. The experimental490

framework and the data simulation model are first presented and the baseline

used for the comparison, seqRF, is described. Then, the four variants involv-

ing parallel implementations and adaptation of bootstrapping are compared,

and online RF is also evaluated in a separate section. A specific focus on the

influence of biases in subsampling and splitting is performed for both types of495

approaches (parallel implementations and online implementation). Finally, we

analyze the performance obtained on a well-known real-world benchmark for

Big Data experiments that contains airline on-time performance data.

5https://github.com/david-matheson/rftk
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4.1. Experimental framework and simulation model

All experiments have been conducted on the same server (with concurrent500

access), with 8 processors AMD Opteron 8384 2.7Ghz, with 4 cores each, a total

RAM equal to 256 Go and running on Debian 8 Jessie. Parallel methods were

all run with 10 cores.

There are strong reasons to carry out experimentations in a unified way

involving codes in R. This will be the case in this section except for onRF in505

Section 4.5. Due to their interest, onRF are considered in the experimental

part of the paper, but, due to the lack of available program implemented in

R, an exception has been made and a python library has been used. To allow

fair comparisons between the other methods and to make them independent

from a particular software framework or a particular programming language, all510

methods have been programmed using the following packages:

• the package readr [37] (version 0.1.1), which allows to read more efficiently

flat and tabular text files from disk;

• the package randomForest [38] (version 4.6-10), which implements RF

algorithm using Breiman and Cutler’s original Fortran code;515

• the package parallel [8] (version 3.2.0), which is part of R and supports

parallel computation.

To address all these issues, simulated data are studied in this section. They

correspond to a well controlled model and can thus be used to obtain comprehen-

sive results on the various questions described above. The simulated dataset cor-520

responds to 15,000,000 observations generated from the model described in [39]:

this model is an equiprobable two class problem in which the variable to predict,

Y , takes values in {−1, 1} and the predictors are, for 6 of them, true predictors,

whereas the other ones (in our case only one) are random noise. The simulation

model is defined through the law of Y (P (Y = 1) = P (Y = −1) = 0.5) and the525

conditional distribution of the (Xj)j=1,...,7 given Y = y:
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• with a probability equal to 0.7, Xj ∼ N (jy, 1) for j ∈ {1, 2, 3} and Xj ∼
N (0, 1) for j ∈ {4, 5, 6} (submodel 1);

• with a probability equal to 0.3, Xj ∼ N (0, 1) for j ∈ {1, 2, 3} and Xj ∼
N ((j − 3)y, 1) for j ∈ {4, 5, 6} (submodel 2);530

• X7 ∼ N (0, 1).

All variables are centered and scaled to unit variance after the simulation pro-

cess, which gave a dataset which size (in plain text format) was equal to 1.9 Go.

With the readr package, loading this dataset took approximately one minute.

Compared to the size of available RAM, this dataset was relatively moderate.535

This allowed us to perform extensive comparisons while being in the realistic Big

Data framework with a large number of observations. It has to be noted that RF

can be memory demanding because of the need to save all the splits of a large

number of deep trees. Hence, even a dataset of 1.9 Go can be challenging for a

server with 256Go RAM, especially for parallel implementations. For instance,540

our implementation of dacRF with 10 parallel processes, each learning a RF

with 100 trees, peaked at 244 Go of RAM. Similarly, the python implementation

of onRF, RFTK, overloaded the RAM when trying to learn a RF with 500 trees.

The 15,000,000 observations of this dataset were first randomly ordered.

Then, to illustrate the effect of representativeness of data in different sub-545

samples in both divide-and-conquer and online approaches, two permuted ver-

sions of this same dataset were considered (see Figure 8 for an illustration):
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unbalanced

Y values:
gray: −1

white: 1

x-biases

X values:
gray: submodel1

white: submodel2

Figure 8: Illustration of the datasets unbalanced (left) and x-biases (right)

• unbalanced will refer to a permuted dataset in which Y values arrive

with a particular pattern. More precisely, we permuted the observations

so that the first half of the observations contain a proportion p (with550

p ∈ {10; 1}%) of observations coming from the first class (Y = 1), and the

other half contains the same proportion of observations from the second

class (Y = −1);

• x-biases will refer to a permuted dataset in which X values arrive with a

particular pattern. More precisely, in that case, the data are split into P555

parts in which the first 70% of the observations are coming from submodel

1 and the last 30% are coming from submodel 2.

4.2. Training a baseline seqRF for comparison

The aims of the simulations of this subsection were multiple: firstly, different

approaches designed to handle Big Data with RF were compared. The compar-560

ison was made on the point of view of the computational effort needed to train

the classifier and also in term of its accuracy. All along this subsection the sim-
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ulated dataset described in Section 4.1 (with randomly ordered observations) is

used.

We designed experiments to compare this sequential RF (seqRF) to the565

four variants introduced in Section 3, namely: sampRF, moonRF, blbRF

and dacRF (see Table 2 for definitions). Thus, as a baseline for comparison, a

standard RF (seqRF) was first trained with the R package randomForest. This

package allows to control the complexity of the trees in the RF by setting a max-

imum number of terminal nodes (leaves). By default, fully developed trees are570

grown, with unlimited number of leaves, until all leaves are pure (i.e. composed

of observations all belonging to the same class). Considering the very large

number of observations, the number of leaves was limited to 500 in our experi-

ments. The choice of a maximum number of leaves of 500 was also motivated by

the fact that maximal trees did not bring much improvement in accuracy. This575

is illustrated by the left-hand side of Figure 9 that provides the value of the

OOB error versus the setting of the maximum number of leaves allowed in the

model (for seqRF with 100 trees). On the contrary, large maximum numbers

of leaves increase the seqRF complexity significantly (the maximal tree contain

approximately 60,000 terminal nodes).580

The right-hand side of Figure 9 illustrates the evolution of the OOB error

of seqRF versus the number of trees in the RF, for a number of trees up to

500. The OOB error stabilizes between 100 and 200 trees and training seqRF

with 500 trees took approximately 18 hours. Hence, we chose to keep a limited

number of trees of 100, which seems a good compromise between accuracy and585

computational time.

In conclusion, the baseline for comparison was obtained for seqRF with a

maximum number of leaves set to 500 and a number of trees set to 100. Training

this RF took approximately 7 hours and the resulting OOB error was equal to

4.564e−3.590
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Figure 9: OOB error evolution for seqRF versus the number of trees (left), and the maximum

number of leaves (right).

4.3. Comparison of four RF approaches with parallel implementations and boot-

strap variants

The other methods, sampRF, moonRF, blbRF and dacRF, which in-

volve parallel implementation and variants of bootstrapping, were then run on

the same dataset. In all simulations, the maximum number of leaves in the595

trees was set to 500. Also, since the purpose of this section is only to com-

pare the methods themselves, all subsamplings were done in such a way that

the subsamples were fairly representative of the whole dataset from the X and

Y distributional viewpoint. This was performed by a simple random sampling

within the entire dataset.600

The different results are compared through the computational time needed

by every method (real elapsed time as returned by R) and the prediction per-

formance. This last quantity was assessed in three ways:

i) errForest, which is defined in Equation (1) and refers to the standard OOB

error of a RF. This quantity is hard to obtain with the different methods605

described in this chapter when the sample size is large but we nevertheless
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computed it to check if the approximations usually used to estimate this

quantity are reliable;

ii) BDerrForest, which is the approximation of errForest defined in Sec-

tion 3.2.4;610

iii) errTest, which is a standard test error using a test sample, with 150,000

observations, generated independently from the training sample.

As illustrated below, errForest and errTest were always found indistinguish-

able, which confirms that the OOB error is a good estimation of the prediction

error.615

First, the impact of K and q for blbRF and dacRF was studied. As shown

in Figure 10, when q is set to 10, blbRF and dacRF are quite insensitive to the

choice of K. However, BDerrForest is a very pessimistic approximation of the

prediction error for dacRF, whereas it gives good approximations for blbRF.

Computational time for training is obviously linearly increasing for blbRF, as620

we built more sub-samples, whereas it is decreasing for dacRF, because the size

of each chunk becomes smaller.

Symmetrically, K was then set to 10 to illustrate the effect of the number

of trees in each chunk/sub-samples. Results are provided in Figure 11. Again,

blbRF is quite robust to the choice of q. On the contrary, for dacRF, the625

number of trees built in each chunk must be quite high to get an unbiased

BDerrForest, at the cost of a substantially increased computational time. In

other simulations for dacRF, q was also set to 100 and K was increased but

this did not give any improvement (not shown). Due to these conclusions, the

values K = 10 and q = 50 were chosen for blbRF and the values K = 10,630

q = 100 were chosen for dacRF in the rest of the simulations.

Second, the impact of the sampling fraction, f = m
n was studied for sam-

pRF and moonRF, with a number of trees set to 100. More precisely, for

sampRF, a subsample containing m observations was randomly drawn from

the entire dataset, with f ∈ {0.1, 1, 10}%. Results (see the right-hand side of635

Figure 12) show that BDerrForest is quite unbiased as soon as f is larger than
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Figure 10: Evolution of the prediction error (top) and of the computational time for training

(bottom) versus K. K is the number of chunks for dacRF (right) or the number of sub-

samples for blbRF (left). The number of trees, q, is set to 10. The horizontal dashed line

indicates the OOB error of seqRF.

● ● ● ●● ● ● ●● ● ● ●

●

●

●
●

● ● ● ●● ● ● ●

blbRF dacRF

25 50 75 100 25 50 75 100
0.004

0.005

0.006

0.007

0.008

q (number of trees)

pr
ed

ic
tio

n 
er

ro
r

● ● ● ●

●

●

●

●

blbRF dacRF

25 50 75 100 25 50 75 100
0

500

1000

1500

q (number of trees)

tr
ai

ni
ng

 ti
m

e 
(s

ec
on

ds
)

error type
●

●

●

BDerrForest

errForest

errTest

Figure 11: Evolution of the prediction error (top) and of the computational time for training

(bottom) versus q. q is the number of trees in each chunk for dacRF (right) or the number of

trees in each sub-sample for blbRF (left). K is set to 10. The horizontal dashed line indicates

the OOB error of seqRF.
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Figure 12: Evolution of the prediction error (top) and of the computational time for training

(bottom) versus the sampling fraction (log10-scale) used in moonRF (left) and sampRF

(right). The number of trees is set to 100. The horizontal dashed line indicates the OOB

error of seqRF.

1%. Furthermore, f = 10% leads to some increase in computational time needed

for training, despite the fact that this time is around 10 times smaller than the

one needed to train dacRF with 10 chunks and 100 trees. For moonRF, as

the 100 trees are built on samples with m different observations each, the sam-640

pling fraction was varied in {10−5, 10−4, 10−3}, in order to get a fraction of

observations used by the entire RF (total sampling fraction, represented on the

x-axes of the figure) comparable to the one used in sampRF. The left-hand

part of Figure 12 shows that BDerrForest gives quite unbiased estimates of the

prediction error. Moreover, the computational time for training remains low.645

The increase of the prediction error when f = 0.1% is explained by the fact

that subsamples contain only 150 observations in this case. Based on these

experiments, the total sampling fraction was set to 1% for both sampRF and

moonRF in the rest of the simulations.

Several conclusions can be driven from these results. First, the compu-650

tational time needed to train all these Big Data versions of RF is almost the
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same and quite reduced (about a few minutes) compared to seqRF. The fastest

approach is to extract a very small subsample and the slowest is the dacRF

approach with 10 chunks of 100 trees each (because the number of observations

sent to each chunk is not much reduced compared to the original dataset). The655

results are not shown for the sake of simplicity but the performances are also

quite stable: when a method was trained several times with the same parame-

ters, the performances were almost always very close.

Regarding the errors, it has first to be noted that the prediction error (as

assessed with errTest) is much better estimated by errForest than by the proxy660

of the OOB error provided by BDerrForest. In particular, BDerrForest tends to

be biased for sampRF and moonRF approaches when the sampling fraction is

very small and it tends to overestimate the prediction error (sometimes strongly)

for dacRF.

Finally, many methods achieve a performance which is quite close to that665

of the standard RF algorithm, seqRF: sampRF and moonRF error rates are

very similar to that of seqRF, even for very small subsamples (with at least

0.1% of the original observations, the difference between the two predictors is

not very important). blbRF is also quite close to seqRF and remarkably stable

to a change in its parameters K and q. Finally, dacRF also gives an accurate670

predictor but its BDerrForest error estimation is close to the prediction error

only when the number of trees in the RF is large enough: this is obtained at the

price of a higher computational cost (about 10 times larger than for the other

approaches).

4.4. Impact of subsampling biases and tree depth675

In the previous section, simulations were conducted with representative sub-

samples and with a maximum number of leaves equal to 500 for every tree in

every RF. The present section pushes the analysis a bit further by specifically

investigating the influence of these two features on the results. All simulations

were performed with the same dataset and the same computing environment680

than in the previous sections. Finally, the different parameters for the RF
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methods were also set similarly: blbRF and dacRF were learned respectively

with K = 10 and q = 50 and with K = 10, q = 100, whereas moonRF and

sampRF were learned with a total sampling fraction equal to 0.1%.

As explained in Section 3.2, dacRF can be influenced by the lack of repre-685

sentativeness of the data sent to the different chunks. In this section, we eval-

uate the influence of such cases in two different directions. We have considered

the non representativeness of observations in the different chunks/sub-samples,

firstly according to Y values using the unbalanced dataset and secondly, ac-

cording to X values using the x-biases dataset (see Section 4.1 for a description690

of these two datasets). For dacRF, this simulation corresponds to the case

where the sub-forests built from the different chunks are very heterogeneous.

This issue has been discussed in Section 3.2.3 and we will show that it indeed

has a strong impact in practice.

Results associated to the unbalanced case are presented in Figure 13. In695

this case, data are organized so that, for dacRF, half of the chunks have a

proportion p ∈ {0.01, 0.1} of observations from the first class (Y = 1), and

the other half have the same proportion of observations from the second class

(Y = −1). For blbRF and moonRF, half of the sub-samples were drawn in

order to get a proportion p of observation from the first class and the other700

half the same proportion of observations from the second class. Finally, as

there is only one subsample to draw for sampRF, it has been obtained with a

proportion p of observations of the first class. Hence, the results associated to

sampRF are not fully comparable to the other two.

The first fact worth noting in these results is again that errForest and errTest705

are always very close, whereas BDerrForest is more and more biased as p de-

creases. For p = 0.1, BDerrForest bias is rather stable for all methods, except for

sampRF (which is explained by the fact that only one subsample is chosen and

thus 90% of the observations are coming from the second class). When p = 0.01

(which corresponds to a quite extreme situation), we can see that dacRF is the710

method that is the most affected in terms of BDerrForest (BDerrForest strongly

underestimates the prediction error) but also in terms of errForest and errTest
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Figure 13: Prediction error behavior for 4 RF methods for unbalanced data. The unbalanced

proportion p is set to 0.01 (left) or to 0.1 (right). The horizontal dashed line indicates the

OOB error of seqRF.

because these two quantities increase a lot.

Interestingly, moonRF is quite robust to this situation, whereas blbRF has

a BDerrForest which strongly overestimates the prediction error. The difference715

of behavior between these two last methods might come from the fact that, in

our setting, 100 sub-samples are drawn for moonRF but only 10 for blbRF.

A similar conclusion is obtained for biases towards X values: simulations

have been performed for dacRF with x-biases obtained by partitioning the

data into 2 parts (as illustrated on the right-hand side of Figure 8), leading to720

7/10 of the K = 10 chunks of data to contain only observations from submodel

1 and the other 3/10 chunks containing only observations from submodel 2.

Results are given in Figure 14. This result shows that the performance of RF

is strongly deteriorated when the sub-forests are based on observations coming

from different distributions X|Y : in this case, the test misclassification rate is725

multiplied by a factor of more than 50. Moreover, BDerrForest appears to be a

very bad estimation of the RF prediction error.

Finally, the issue of tree depth is investigated more closely. As mentioned
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dashed line indicates the OOB error of seqRF.

above, the maximum number of leaves was set to 500 in order to get comparable

tree complexities. However homogeneity (in terms of classes) of leaves differs730

when a tree is built on the entire dataset or on a fraction of it. To illustrate this,

the mean Gini index (over all leaves of a tree and over 100 trees) was computed

(it is defined by 2p̂(1− p̂), with p̂ the proportion of observations of class 1 in a

leaf). Results are reported in Table 6.

For sampling fractions equal to 0.1% or 1%, tree leaves are pure (i.e., contain735

observations from only one class). But for sampling fractions equal to 100%

and 10%, the heterogeneity of the leaves is more important. The effect of tree

depths on RF performance was thus investigated. Recall that in RF all trees

are typically grown to maximal trees (splits are performed until each leaf is

pure) and that in CART an optimal tree is obtained by pruning the maximal740

tree. Table 6 contains the number of leaves of the maximal tree and the optimal

CART tree associated to each sampling fraction. Trees with 500 leaves are very

far from maximal trees in most cases and even far from the optimal CART tree

for sampling fractions equal to 100% and 10%.

Finally, the performances of 3 RF methods using maximal trees instead of745
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Sampling Comp. Max. tree Pruned tree mean Gini

fraction time size size

100% 5 hours 60683 3789 0.233

10% 13 min 6999 966 0.183

1% 23 sec 906 187 0.073

0.1% 0.01 sec 35 10 0.000

Table 6: Number of leaves and leaves heterogeneity of trees built on various fractions of the

data. The second column indicates the computational time needed to build one tree, while

the number of leaves of the maximal tree and the optimal pruned tree are given in third and

fourth column respectively. The last column is the mean Gini index over all leaves of a tree

and over 100 trees.

500 leaves trees were obtained. The results are illustrated in Figure 15. Com-

putational times are comparable to those shown in Figures 11 and 12, while the

misclassification rates are slightly improved. The remaining heterogeneity, when

developing trees with 500 leaves, does not affect much the performance in that

case. Hence, while pruning all trees would lead to a prohibitive computational750

time, a constraint on tree depth may well be adapted to the Big Data case. This

point needs a more in-depth analysis and is left for further research.

4.5. Online random forest

This section is dedicated to simulations with onRF. The simulations were

performed with the method described in [36] which is available at https:755

//github.com/david-matheson/rftk (onRF). The method is implemented

in python. Thus the computational time cannot be directly compared to the

computational times described in the two previous sections (because of the

programming language side effect). Similarly, the input hyperparameters of

randomForest function in the R package randomForest are not exactly the same760

than the ones proposed in onRF: for instance, in the R package, the complexity

of each tree is controlled by setting the maximum number of leaves in a tree

whereas in onRF, it is controlled by setting the maximum depth of the trees.
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maximal trees or a maximum number of leaves of 500.

Additionally, the two tools are very differently documented: every function and

every option in the R package are described in details in the documentation765

whereas RFTK is not provided with a documentation. However, the meaning

of the different options and outputs of the library can be guessed from their

names in most cases.

When relevant, we discuss the comparison between the standard approaches

tested in the two previous sections and the online RF tested in the current770

version but the reader must be aware that some of the differences might come

directly from the method itself (standard or online), whereas others come from

the implementation and programming languages and that it is impossible to

distinguish between the two.

The simulations in this section were performed on the datasets described in775

Section 4.1. The training dataset (randomly ordered) took approximately 9 min-

utes to be loaded with the function loadtxt of the python library numpy, which

is about 9 times larger than the time needed by the R package readr to perform

the same task. In the sequel, results about this dataset will be referred as stan-

dard. Moreover, simulations were also performed to study the effect of sampling780
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(subsamples drawn at random with a sampling fraction in {0.01, 0.1, 1, 10}%)

or of biased order of arrival of the observations (with the datasets unbalanced,

with p = 0.01, and x-biases with 15 parts). For x-biases the number of parts

was chosen differently than in Section 4.3 (for dacRF) because only 2 parts

would have led to a quite extreme situation for onRF, in which all data coming785

from submodel 1 are presented first, before all data coming from submodel 2

are presented. We have thus chosen a more moderate situation in which data

from the two submodels are presented by blocks, alternating submodel 1 and

submodel 2 blocks. Note that both simulation settings are similar, since dacRF

processes the different (biased in X) blocks in parallel.790

RF were trained with a number of trees equal to 50 or 100 and with a

control of the complexity of the trees by their maximum depth which was varied

in {5, 10, 15, 50}. As explained in Section 4.1, RF with more trees could not

be learned because they overloaded RAM capacity. Finally, RFTK does not

provide the online approximation of OOB error so the accuracy was assessed795

by the computation of the prediction error on the same test dataset used in the

previous two sections.

Figure 16 displays the misclassification rate of onRF on the test dataset

versus the type of bias in the order of arrival of data (no bias, unbalanced or

x-biases) and versus the number of trees in the RF. The results are provided800

for a RF in which the maximum depth of the trees was limited to 15 (which

almost always correspond to fully developed trees).

42



Number of trees: 50 Number of trees: 100

standard unbalanced x−biases standard unbalanced x−biases

0.000

0.005

0.010

0.015

0.020

dataset

pr
ed

ic
tio

n 
er

ro
r 

(t
es

t)

Figure 16: onRF: Prediction error for the test dataset versus the type of bias in the order of

arrival of the data. The horizontal dashed line indicates the OOB error of seqRF.

The result shows that, contrary to the dacRF case, x-biases almost do not

affect the accuracy of the results, despite the fact that the classifier always has

a better accuracy when data are presented in random order. On the contrary,805

unbalanced has a strong negative impact on the accuracy of the classifier.

Finally, for the best case scenario (standard), the accuracy of onRF is not

much affected by the number of trees in the RF but the accuracy tends to

get even worse when increasing the number of trees in the worst case scenario

(unbalanced). In comparison with the strategies described in Section 4.3,810

onRF has comparable test error rates (between (4− 4.3)× 10−3) for RF with

100 trees).

Additionally, Figure 17 displays the evolution of the computational time

versus the type of bias in the order of arrival of the data and the number of

trees in the RF. The results are provided for RF in which the maximum depth815

of the trees was limited to 15. As expected, the computational time increases

with the number of trees in the RF, in a more than linear way. Surprisingly,

the computational time of the worse case scenario (unbalanced bias) is the

smallest. A possible explanation is the fact that trees are presented successively
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Figure 17: Training time (seconds) of onRF versus the type of bias in the order of arrival of

data.

a large number of observations with the same value of the target variable (Y ):820

the terminal nodes are thus maybe more easily pure during the training process

in this scenario.

Computational times are hard to compare with the ones obtained in Sec-

tion 4.3. However, computational times are of order 30 minutes at most for

dacRF, and 1-2 minutes for blbRF and moonRF, whereas onRF takes ap-825

proximately 10 hours for 50 trees and 30 hours for 100 trees, which is even larger

than training the RF sequentially with randomForest (7 hours).

Figure 18 displays the evolution of the misclassification rate and of the com-

putational time versus the sampling fraction when a random subsample of the

dataset is used for the training (the number of trees in the RF is equal to 100830

and the maximum depth set to 15). The computational time needed to train

the model is more than linear but the prediction accuracy also decreases in a

more than linear way with the sampling fraction. The loss in accuracy is slightly

worse than what was obtained in Section 4.3 for sampRF, showing that onRF

might need a larger sample size to perform well.835

Finally, Figure 19 displays the evolution of the test misclassification rate, of
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Figure 18: Prediction error (left) and training time (right) versus the sampling fraction for

onRF. x-axis is log10-scaled. The horizontal dashed line indicates the OOB error of seqRF.

the computational time and of the average number of leaves in the trees ver-

sus the value of the maximum depth for RF with 100 trees. As expected, the

computational time is in direct relation with the complexity of the RF (number

of trees and maximum depth) but tends to remain almost stable for trees with840

a maximum depth larger than 15. The same behavior is observed for the mis-

classification rates in standard and x-biases which reach their minimum for

RF with a maximum depth set to 15. Finally, the number of leaves for unbal-

anced is much smaller, which also explains why the computational time needed

to train the RF is smaller in this case. For this type of bias, the misclassification845

rate increases with the maximum depth for RF with maximum depths larger

than 10: as for the number of trees, the complexity of the model seem to have

a negative impact on this kind of bias.
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Figure 19: Prediction error (left), training time (middle), average number of leaves of trees

(right), versus the maximum depth of trees in RF. The horizontal dashed line (left) indicates

the OOB error of seqRF. The black horizontal line (right) corresponds to the RF used in

experiments of Sections 4.2, 4.3 and 4.4 (maximum number of leaves limited to 500).

4.6. Airline dataset

In the present section, similar experiments are performed with a real world850

dataset related to flight delays. The data were first processed in [7] to illustrate

the use of the R packages bigmemory and foreach for Big Data computing

[40]. In [7], the data were mainly used for description purpose (e.g., quantile

calculation), whereas we will be using them for prediction. More precisely, five

variables based on the original variables included in the dataset were used to855

predict if the flight was likely to arrive on time or with a delay larger than 15

minutes (flights with a delay smaller than 15 minutes were considered on time).

The predictors were: the moment of the flight (two levels: night/daytime),

the moment of the week (two levels: weekday/week-end), the departure time

(in minutes, numeric) and the distance (numeric). The dataset used to make860

the simulations contained 120,748,239 observations (observations with missing

values were filtered out) and had a size equal to 3.2 GB (compared to the 12.3

GB of the original data with approximately the same number of observations).
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Loading the dataset and processing it to compute and extract the predictors

and the target variables took approximately 30 minutes. Another feature of the865

dataset is that it is unbalanced: most of the flights are on time (only 19.3% of

the flights are late).

The same methods than the one described in Sections 4.2 and 4.3 were

compared:

• a standard RF, seqRF, was computed sequentially. It contained 100870

trees. The RF took 16 hours to be obtained and its OOB error was equal

to 18.32%;

• sampRF was trained with a subsample of the total data (1% of all the ob-

servations were sampled at random without replacement). This RF was

trained in parallel with 15 cores, each core building 7 trees from boot-875

strap samples coming from the common subsample (the final RF hence

contained 105 trees);

• a blbRF was also trained using K = 15 subsamples, each containing

about 454,272 observations (about 0.4% of the size of the total dataset).

15 sub-forests were trained in parallel on 15 cores with 7 trees each (the880

final RF hence contained 105 trees);

• Finally dacRF was also obtained with K = 15 chunks and q = 7 trees in

each sub-forest. The 15 sub-forests were grown in parallel with 15 cores

(the final RF contained 105 trees).

The number of trees, q, built in each chunk for dacRF is smaller than what885

seemed to be a good choice from the conclusion driven in Section 4.3. But, for

this example, increasing the number of trees did not lead to a better accuracy

(despite the fact that it increased a lot the computational time). Finally, in all

methods, the maximum number of terminal leaves in the trees was set to 500.

Results are given in Figure 20 in which the notations are the same than in890

Section 4.3. The results show that there is almost no difference in terms of

performance accuracy between using all data and using only a small proportion
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Figure 20: Performance (computational time and misclassification rates) obtained by three

different RF methods for Big Data on Airline data. The horizontal dashed line indicates the

OOB error of seqRF.

(about 0.01%) of them. In terms of compromise between computational time

and accuracy, using a small subsample is clearly the best strategy, provided that

the user is able to obtain a representative subsample at a low computational895

cost. Also, contrary to what happened in the example described in Section 4.4,

BDerrForest is always a good approximation of errForest. An explanation of

this result might be that, for Airline dataset, prediction accuracy is quite poor

and this might be due to explanatory variables that are not informative enough.

Hence differences between BDerrForest and errForest may be hidden by the fact900

that the prediction error rate is quite high.

In addition, the impact of the representativeness (with respect to the target

variable) of the samples on which the RF were trained was assessed: instead

of using a representative (hence unbalanced) sample from the total dataset, a

balanced subsample (for 50% of delayed flights and 50% of on time flights) was905

obtained and used as the input data to train the RF. Its size was equal to 10%

of the total dataset size. This approach provided an errForest equal to 33.34%

(and BDerrForest was equal to 39.15%), which is strongly deteriorated compared
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to the previous misclassification rates. In this example, the representativeness

of the observations contained in the subsample strongly impacts the estimated910

model. The model with balanced data has a better ability to detect late flights

and favors the sensitivity over the specificity.

5. Conclusion and discussion

This final section provides a short conclusion and opens two perspectives.

The first one proposes to consider re-weighting RF as an alternative for tack-915

ling the lack of representativeness for BD-RF and the second one focuses on

alternative online RF schemes and on RF for data streams.

5.1. Conclusions

This paper aims at extending standard Random Forests in order to process

Big Data. Indeed RF is an interesting example among the widely used statistical920

methods in machine learning since it already offers several ways to deal with

massive data in offline or online contexts. Focusing on classification problems,

we reviewed some of the available proposals about RF in parallel environments

and online RF. We formulated various remarks for RF in the Big Data context,

including approximations of out-of-bag type errors. We experimented on two925

massive datasets (15 and 120 millions of observations), a simulated one and a

real world dataset, five variants involving subsampling, adaptations of bootstrap

to Big Data, a divide-and-conquer approach and online learning.

Among the variants of RF that we tested, the fastest were sampRF with

a small sampling fraction and blbRF. On the contrary, onRF was not found930

computationally efficient, even compared to the standard method seqRF, in

which all data are processed as a whole and trees are built sequentially. On

a performance point of view, all methods provide satisfactory results but pa-

rameters (size of the subsamples, number of chunks...) must be designed with

care so as to obtain a low prediction error. However, since the estimation of935

OOB error that can be simply designed from the different variants was found a
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bad estimate of the prediction error in many cases, it is also advised to rather

calculate an error on an independent smaller test subsample. When the amount

of data is that big, computing such a test error is easy and can be performed at

low computational cost.940

Finally, one of the most crucial point stressed in the simulations is that the

lack of representativeness of subsamples can result in drastic deterioration of

the performances of Big Data variants of RF, especially of dacRF. However,

designing a subsample representative enough of the whole dataset can be an

issue per se in the Big Data context, but this problem is out of the scope of the945

present article.

5.2. Re-weighting schemes

As an alternative, some re-weighting schemes could be used to address the

issue of the lack of representativeness for BD-RF. Let us sketch some possibili-

ties.950

Following a notation from Breiman [21], RF lead to better results when

there is a higher diversity among the trees. So recently, some extensions of RF

have been defined for improving an initial RF. In [41], Fawagreh et al. use an

unsupervised learning technique (Local Outlier Factor, LOF) to identify diverse

trees in the RF and then, they perform ensemble pruning by selecting trees955

with the highest LOF scores to produce an extension of RF termed LOFB-

DRF, much smaller in size than RF and performing better. This scheme can be

extended by using other diversity measures: [42] presents a theoretical analysis

on six existing diversity measures.

Another possible variant would be to consider the whole RF as an ensemble960

of sub-forests and to adapt the majority vote scheme with weights that address,

e.g., the issue of the sampling bias. Recently in [43], Winham et al. propose

to introduce a weighted RF approach to improve predictive performance: the

weighting scheme is based on the individual performance of the trees and could

be adapted to the dacRF framework.965

Along the same ideas, and at least for an exploratory stage, it would certainly
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be possible to adapt a simple idea coming from the variants of AdaBoost [44] for

classification boosting algorithms. Recall that the basic idea of boosting is, as for

the RF case, to generate many different base predictors obtained by perturbing

the training set and to combine them. Each predictor is designed sequentially,970

highlighting the observations poorly predicted. This is a crucial difference with

RF scheme for which the different training samples are obtained by independent

bootstraps. But the aggregation part of the boosting algorithm is interesting

here: instead of taking the majority vote of the tree predictions as in the RF

context, a weighted combination of trees is considered. The unnormalized weight975

of the tree t is simply αt = 1/2 ln(εt/(1 − εt)) where εt is the misclassification

error computed on the whole training sample L. This could be adapted by

considering weighted sub-forests using weights of such form, evaluated on a

same (small) subset of observations that is supposed to be representative of the

whole dataset.980

5.3. Online data and Data Streams

The discussion sketched about online RF can be extended. Indeed, the use of

ERT variant of RF instead of Breiman’s RF allows to reduce the computational

cost. It would be of interest to use this RF variant in dacRF, or even more

randomized ones (like [45] PERT, Perfect Random Tree Ensembles, or [46, 47]985

PRF, Purely Random Forests). The idea of those latter variants is to not choose

the variable involved in a split and the associated threshold from the data but

to randomly choose them according to different schemes. Finally, onRF could

be a way to use only a portion of the dataset until the RF is accurate enough.

Moreover, one valuable characteristic of onRF is that it could address both the990

issue of Volume and Velocity.

In the framework of online RF, only sequential inputs are considered. But

more widely in the Big Data context, data streams are of interest. Not only

do they only consider sequential inputs, but they also entail unbounded data

that should be processed in limited (given their unboundedness) memory and995

in an online fashion to obtain real-time answers to application queries [48].
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Moreover, data streams can be processed in observation- or time-based windows

or even batches which collect a number of recent observations [49]. It could be

interesting to fully adapt online RF to the data stream context [50] and to

obtain similar theoretical results.1000
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[31] S. del Rio, V. López, J. Beńıtez, F. Herrera, On the use of MapReduce for

imbalanced big data using random forest, Information Sciences 285 (2014)

112–137. doi:10.1016/j.ins.2014.03.043.

[32] N. Oza, S. Russel, Online bagging and boosting, in: M. Kaufmann (Ed.),

Proceedings of Eighth International Workshop on Artificial Intelligence and1100

Statistics, Key West, Florida, USA, 2001, pp. 105–112.

[33] H. Lee, M. Clyde, Online Bayesian bagging, Journal of Maching Learning

Research 5 (2004) 143–151.

55

http://dx.doi.org/10.1002/widm.1114
http://dx.doi.org/10.1016/j.patrec.2010.03.014
http://dx.doi.org/10.1016/j.patrec.2010.03.014
http://dx.doi.org/10.1016/j.patrec.2010.03.014
http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
http://www3.stat.sinica.edu.tw/statistica/J18N3/J18N38/J18N38.html
http://dx.doi.org/10.1016/j.ins.2014.03.043


[34] J. Hanley, B. MacGibbon, Creating non-parametric bootstrap samples us-

ing Poisson frequencies, Computer Methods and Programs in Biomedicine1105

83 (2006) 57–62.

[35] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Machine

Learning 63 (1) (2006) 3–42. doi:10.1007/s10994-006-6226-1.

[36] M. Denil, D. Matheson, N. de Freitas, Consistency of online random forests,

in: Proceedings of the 30th International Conference on Machine Learning1110

(ICML 2013), 2013, pp. 1256–1264.

[37] H. Wickham, R. François, readr: Read Tabular Data, R package version

0.2.2 (2015).

URL http://CRAN.R-project.org/package=readr

[38] A. Liaw, M. Wiener, Classification and regression by randomForest, R News1115

2 (3) (2002) 18–22.

URL http://CRAN.R-project.org/doc/Rnews

[39] J. Weston, A. Elisseff, B. Schoelkopf, M. Tipping, Use of the zero norm with

linear mmodel and kernel methods, Journal of Machine Learning Research

3 (2003) 1439–1461.1120

[40] Revolution Analytics, S. Weston, foreach: Foreach looping construct for R,

R package version 1.4.2 (2014).

URL http://CRAN.R-project.org/package=foreach

[41] K. Fawagreh, M. Gaber, E. Elyan, An outlier detection-based tree se-

lection approach to extreme pruning of random forests, arXiv preprint1125

arXiv:1503.05187 (2015).

[42] E. Tang, P. Suganthan, X. Yao, An analysis of diversity measures, Machine

Learning 65 (2006) 247–271.

[43] S. J. Winham, R. Freimuth, J. Biernacka, A weighted random forests ap-

proach to improve predictive performance, Statistical Analysis and Data1130

Mining: The ASA Data Science Journal 6 (6) (2013) 496–505.

56

http://dx.doi.org/10.1007/s10994-006-6226-1
http://CRAN.R-project.org/package=readr
http://CRAN.R-project.org/package=readr
http://CRAN.R-project.org/doc/Rnews
http://CRAN.R-project.org/doc/Rnews
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=foreach


[44] Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learn-

ing and an application to boosting, Journal of Computer and System Sci-

ences 55 (1) (1997) 119–139.

[45] A. Cutler, G. Zhao, Pert-perfect random tree ensembles, Computing Sci-1135

ence and Statistics 33 (2001) 490–497.

[46] G. Biau, L. Devroye, G. Lugosi, Consistency of random forests and other

averaging classifiers, The Journal of Machine Learning Research 9 (2008)

2015–2033.

[47] S. Arlot, R. Genuer, Analysis of purely random forests bias, arXiv preprint1140

arXiv:1407.3939 (2014).

[48] M. Garofalakis, J. Gehrke, R. Rastogi, Data Stream Management: Pro-

cessing High-Speed Data Streams, Data-Centric Systems and Applications,

Springer-Verlag, Berlin Heidelberg, 2016.

[49] C. Giannella, J. Han, J. Pei, X. Yan, P. Yu, Mining frequent patterns in1145

data streams at multiple time granularities, in: H. Kargupta, A. Joshi,

K. Sivakumar, Y. Yesha (Eds.), Data Mining: Next Generation Challenges

and Future Directions (Proceedings of the NSF Workshop on Next Gener-

ation Data Mining), AAAI Press / The MIT Press, Menlo Park, CA, USA,

2004, pp. 191–212.1150

[50] H. Abdulsalam, D. Skillicorn, P. Martin, Classification using streaming

random forests, IEEE Transactions on Knowledge and Data Engineering

23 (1) (2011) 22–36. doi:10.1109/TKDE.2010.36.

Additional Files
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