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Abstract

The recent development of deep learning methods have undoubtedly led to great improvement in various machine
learning tasks, especially in prediction tasks. This type of methods have also been adapted to answer various problems
in bioinformatics, including automatic genome annotation, artificial genome generation, or phenotype prediction. In
particular, a specific type of deep learning method, called Graph Neural Network (GNN) has repeatedly been reported as
a good candidate to predict phenotypes from gene expression because its ability to embed information on gene regulation
or co-expression through the use of a gene network. However, up to date, no complete and reproducible benchmark has
ever been performed to analyze the trade-off between cost and benefit of this approach compared to more standard (and
simpler) machine learning methods. In this article, we provide such a benchmark, based on clear and comparable policies
to evaluate the different methods on several datasets. Our conclusion is that GNN rarely provides a real improvement in
prediction performance, especially when compared to the computation effort required by the methods. Our findings on a
limited but controlled simulated dataset shows that this could be explained by the limited quality or predictive power of
the input biological gene network itself.
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Introduction

Machine learning (ML) is increasingly used for transcriptomic-

based predictions. For instance, in cancer, ML can be used to

predict phenotypes such as the cancer type or the likelihood

of a patient responding to a specific treatment [1, 2]. However,

predicting phenotype from transcriptomic data is challenging

due to the high dimensionality, the small-to-moderate sample

size and the high variability between experiments. Classical ML

methods, including logistic regression, support vector machine,

random forest, and more recently deep learning methods, have

been proposed to tackle this question [3].

In cells, genes are organized into regulatory networks that

consist of sets of genes, or parts of genes, that interact with each

other to control specific cell functions. Therefore, various works

have advocated for the use of gene network information in ML

models to improve the performance of phenotype predictions

[4, 5]. In this scope, graph neural networks (GNN) were recently

proposed: GNN is a particular type of convolutional neural

network where a graph representing pairwise relationships

between nodes is used to drive the convolution [6, 7]. Using

biological knowledge on gene regulatory networks (through PPI

networks or co-expression networks) in this type of models,

some authors (e.g., [8, 9]) showed that this approach can

outperform random forest and glmgraph [10] for metastatic

event prediction.

However, in other fields of applications where GNN are

widely used (chemistry or combinatorial optimization), recent

works [11, 12, 13] tend to show that this type of models,

if they sometimes improve the prediction performance, are

also frequently over-complex for the task. A similar work

[14] even showed that classical ML methods often outperform

deep learning for phenotype prediction. Overall, the conclusion

is that simpler models, less demanding to train can obtain

comparable results, which question the ratio between benefits

and costs (in particular computational and thus environmental

cost) of these methods. This question is particularly relevant

for phenotype prediction from gene networks, since the input

graph is usually only a very crude proxy of the true underlying

regulatory mechanism between genes: most used networks in

GNN applications that we found are only PPI based networks,

which are known to reflecting more an ensemble of likely

networks than the real regulatory network [15, 16]. As for

regulatory networks recovered from computational methods,

[17, 18] have shown that they are no better than random guess

in some cases, especially when the regulatory mecanisms are

complex, like in eukaryotes, and that the method is based

on RNA levels only. In some eukaryotes, the mRNA levels of

transcription factors and their targets has indeed been found to

be low [17], which not only questions the relevance of network
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inference methods but also probably of using the regulatory

network as a good addition to expression data for prediction.

In the current article, we present a comprehensive and

reproducible benchmark comparing GNN to other ML methods

for transcriptomic-based phenotype prediction. Our comparison

uses previously published datasets and models, which are

systematically compared using a common ground methodology.

Our main conclusion is that, as expected but rarely reported,

GNNs have performances comparable to simpler methods. We

point a few explanations for this conclusion, both related

to the reliability of the input graph and to a more general

reproductibility problem as already discussed in [19]. Overall,

our hope if that this work helps to better account for the

model complexity in evaluating the performance gain in future

computational tool development.

Graph Neural Networks and their use for
phenotype prediction

This section briefly describes the basic ground common to GNN

methods and how they integrate gene regulatory information

with gene expression to perform predictions.

The basic principle of GNN [20, 21, 22, 23] is to extend the

convolutional filters (or kernels) used in convolutional neural

network (CNN) to extract patterns and stationary properties

from local (and structured) information in the data. More

precisely, the graph edges are used as a way to obtain local

information by the computation of convolutional filters. A

general presentation of most convolution approaches used in

GNN is described in [24] using a message passing framework: if

G = (X,E) is a graph with p nodes (x ∈ X) and edges e ∈ E,

with (potentially missing) associated node and edge features ℓx

and ℓe, GNN iteratively learns a latent representation of node

x at step t + 1 using a message passing approach of the form

h
t+1
x = F

(
h
t
x; 2y: (x,y)∈Eϕt(h

t
x; h

t
y; e(x,y))

)
,

where 2 is a given operator (usually 2 :=
∑

) and F and

ϕt are parameterized functions which parameters are learned

during the training. The initial representation is usually taken

as h0
x := lx and the prediction is obtained as either hT

x

(where T is the last iteration) or as a global numeric value

obtained after additional pooling layers that concatenate sets

of (hT
x )x∈S⊂X . Several variants of this model have been made

available in the Python libraries Spektral [25] (which we used

for our simulations) and PyTorch [26].

In particular, in the remaining of this paper, we use the

GNN “ChebNet”, proposed in [20], which is based on a spectral

decomposition of the graph (through the graph Laplacian

eigendecomposition) and Chebyshev polynomials to define

localized filters. ChebNet also contains graph coarsening and

pooling layers which perform iterative max pooling operations

using graph-based aggregations (called coarsening).

In our use of the method, G is a graph representing gene

regulations, X is the set of genes, and lx ∈ R is the expression

of gene x observed in one individual (one sample). Roughly,

gene expression is used as the message passed from one gene

to its regulating genes, which aims to mimic the biological

process at hand in the cell. Finally, coarsening and pooling

operations are used to aggregate the resulting graph signal,

which is finally passed to a fully connected layer that handles

the final prediction of the phenotype (a real number or a class

{1, . . . ,M}).

Material and methods

Data description
We selected datasets from a subset of articles for which a

reasonable amount of information was available to reproduce

experiments. More precisely, we selected articles for which the

gene expression dataset was available with all pre-processing

and filtering steps. Moreover, we selected datasets from articles

for which the gene network was also provided with all pre-

processing steps (if needed), and part of the source code for

experiments. Used datasets are described in rows 1–4 of Table 1.

Links for data and code availability are given in Table 2

when possible. Moreover, Supplementary Table S1 provides

a more detailed description of the dataset characteristics and

associated prediction tasks.

In addition, to provide positive control examples, we also

used two simulated datasets. One was a small and well-

controlled dataset generated with the simulation tool sismonr1

[27]. More precisely, this dataset was simulated from 20 genes,

with 2 copies of each gene. The probability of the genes to

be protein-coding genes was set to 70% (as was done in the

tool tutorial). Two hundred time steps were simulated for 100

independent individuals.

The second simulated dataset was obtained from a similar

mechanistic model and previously made available through the

DREAM5 challenge on network inference2. From this challenge,

we downloaded on the wiki page In silico test (network) and

training (static expression) data. We randomly chose one gene

as the target gene expression to prediction from the other gene

expressions and the network. Gene expressions were previously

centered and scaled.

For some of the datasets, additional preprocessings

were sometimes performed compared to the published

(BreastCancer) or generated (Simulated) datasets, in line with

the original code from authors. These preprocessings are fully

described in Section 1.2 of Supplementary material.

All resulting (raw and preprocessed) datasets that were not

available elsewhere, as well as the source code that generated

them, the computing environment information (including R

and package versions) and a basic exploration of the results

are available in our persistent data repository https://doi.

org/10.57745/BZ0TTC and in our source code repository https:

//forgemia.inra.fr/nathalie.villa-vialaneix/gnn.git.

Methods and hyper-parameters
As a baseline for comparison between GNN and simple

methods, we used standard machine learning methods, already

tested in most of the original articles. This included: random

forest, multilayer perceptron, and SVM (or its regression

version, SVR). In some cases, whenever the dataset size

allowed it, we also trained a concurrent graph based approach,

glmgraph [10]. glmgraph is a graph-constrained regression

model (either linear regression or logistic regression)3. Finally,

to better assess the potential of GNN methods, we also

implemented a GNN approach based on convolution between

observations rather than between features. This approach

1 https://oliviaab.github.io/sismonr/
2 https://dreamchallenges.org/

dream-5-network-inference-challenge/
3 The method is available as an R package that was archived
on CRAN on 2021-04-07 but can still be installed from archived

source package.

https://doi.org/10.57745/BZ0TTC
https://doi.org/10.57745/BZ0TTC
https://forgemia.inra.fr/nathalie.villa-vialaneix/gnn.git
https://forgemia.inra.fr/nathalie.villa-vialaneix/gnn.git
https://oliviaab.github.io/sismonr/
https://dreamchallenges.org/dream-5-network-inference-challenge/
https://dreamchallenges.org/dream-5-network-inference-challenge/
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Table 1. Datasets description.

Dataset # nodes# samples Prediction type

(# classes)

BreastCancer [28, 8] 6,888 969 Classification (2)

CancerType [29] 4,4441 11,070 Classification (34)

F1000 prostate [9]2 978 25,565 Classification (9)

F1000 full [9] 978 156,461 Classification

(12, 14, 49)3

Simulated (new) 21 100 Regression

DREAM5 1,564 805 Regression

1The authors used different networks, resulting in different numbers of

nodes. Here, we report the number of genes of the PPI network (used

in our simulations) but this network was augmented by singleton nodes

(up to 7, 091) for GNN simulations, in the same way as the best model

reported in [8].

2Two different graphs were used for this dataset in [9], one that is tissue

specific and the other that is not tissue specific and is common with

“F1000 full”. Here, we report the results obtained with tissue independent

network, found to be better for prediction in [9].

3Three different prediction tasks were performed for outputs (primary

site, subtype, and MOA, respectively) with different numbers of classes.

[29].

was inspired by the successful application of GNNs for node

predictions (such as documents) in a graph (such as a citation

network), where convolutions are applied to node representions

[22]. These methods will be denoted, respectively, by RF, MLP,

SVM, glmgraph, and GNNo in the sequel. Table 3 gives a

comparison of methods tested and discussed in the different

articles versus what we implemented for each dataset.

To avoid as much as possible data leaking, we systematically

used cross-validation (CV) and reported results based on the

test datasets. CV folds were chosen identical to those by the

authors when available (CancerType, F1000) or were generated

randomly and used in all experiments otherwise (BreastCancer,

Simulated, DREAM5). They are made available in our data and

code repositories. In addition, the following policy was used for

the choice of hyper-parameters:

• for GNN, we systematically used hyper-parameters (and

code) provided by the authors of the original paper (from

which we extracted the dataset; see Table 2). Most of the

time, the method was run on the graph reduced to isolated

nodes (unless performed otherwise by the authors);

• for RF, MLP, and SVM, we used the default hyper-

parameters of the used function/library, except for RF

(taken from scikit-learn [30]) for which we increased the

number of trees in the forest from 100 to 500 (because,

according to our personal experience of the method, 100

is usually not enough to properly train the method and

is not the default of other implementations like the

seminal randomForest R package). Note that purposely not

tuning hyper-parameters of these methods is expected to

penalize their performance compared to GNN where hyper-

parameter tuning has very likely been performed by the

authors of the original paper.

In addition, for F1000, [9] have performed a careful hyper-

parameter tuning where a 10-fold CV was used with a fold

to compute the cross-validation error, a fold to compute

the validation error and the hyper-parameters were set so

as to minimize the overall validation error. For the sake of

homogeneity with the other datasets, we only excluded one

fold out of the training for computing the cross-validation

error, both with default function hyper-parameters and

with their tuned hyper-parameters for comparison. This

can explain slight differences between their published results

and ours. Also, in this very specific case, our results with

their published hyper-parameters thus contain a very mild

data leaking issue;

• for glmgraph, since the regularization parameter strongly

impacts the results, we proceeded as described in [28] by

tuning it. However, to avoid data leaking, we added an

additional 5-fold CV loop nested in the original CV loop to

fairly choose this value in each training fold (which increased

the already high computational cost for this method);

• for GNNo, we used the same hyper-parameters as for

the MLP implementation. The graph was estimated

by computing pairwise Euclidean distances between

patients/individuals and by keeping only the 0.2% lowest

distances as edges in the graph.

The precise functions and values of the hyper-parameters

for each experiment is provided in our code repository and in

Tables S2-S5 of our Supplementary material.

Assessing the impact of the input graph, of the GNN
type, and of the implementation
Various additional questions are also addressed by including

some variations to the baseline simulation framework described

in the previous section.

Impact of the implementation

For GNN, we used the implementation provided by [8] on all

datasets. This implementation is based on the one initially

provided by [20]. More precisely, we kept the coarsening

approach as provided in the original code and re-implemented

(for the sake of clarity) the GNN model based on the

Spektral [25] and keras4 libraries. We made sure that this

simplification of the code did not change the obtained results.

On CancerType, we also compared this approach to the original

implementation of [29] that slightly differs from the previous

one for the choice of the order in Chebyshev convolution (fixed

to 1 in the later, thus equivalent to GCN [22]).

For GNNo, Spektral could not be used (because the batch

sizes can not be customized when using a convolution between

individuals in this library). Hence, we slightly modified

the implementation of GNN from keras (https://keras.io/

examples/graph/gnn_citations/) instead, by keeping only one

graph convolutional layer instead of two.

Finally, the impact of the implementation was also assessed

by running the same methods with different implementations.

More precisely:

• multilayer perceptron was implemented using the function

included in the Python libraries scikit-learn [30] and

keras/tensorflow 2;

• SVM was implemented using the functions included in the

Python library scikit-learn and in the R package e1071. Both

4 https://keras.io

https://keras.io/examples/graph/gnn_citations/
https://keras.io/examples/graph/gnn_citations/
https://keras.io
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Table 2. Datasets’ availability.

Dataset Expression Network GNN code Folds Hyper-parameter

availability availability availability availability availability

BreastCancer [28, 8] yes1,7 for [8] yes1,7 for [8] yes2 for [8] no7 in source code

CancerType [29] yes3,7 yes3,7 yes4 yes3,7 in article & source code

F1000 [9] From authors7 From authors yes5 From authors7 yes6

Simulated (new) yes8 yes8 yes9 yes8 yes9

DREAM5 yes10 yes10 yes8 yes8 yes9

1http://mypathsem.bioinf.med.uni-goettingen.de/resources/glrp [accessed 2022-09-27]

2https://gitlab.gwdg.de/UKEBpublic/graph-lrp [accessed 2022-10-13]

3https://drive.google.com/drive/folders/1_Cnvab7mIwCrNJyY-J4aR2ck9i72KH8t?usp=sharing [accessed 2022-10-13]

4https://github.com/RicardoRamirez2020/GCN_Cancer [accessed 2022-10-13]

5https://github.com/mmcdermott/cnn_graph [accessed 2022-09-27]

6in article and in https://github.com/mmcdermott/LINCS_Deep_Learning_Benchmarks [accessed 2022-09-27]

7some preprocessed files (format conversion, scaling, etc) and additional networks (complete, random and patient random) have been made available at

https://doi.org/10.57745/BZ0TTC [released 2023-07-11]

8at https://doi.org/10.57745/BZ0TTC [released 2023-07-11]

9at https://forgemia.inra.fr/nathalie.villa-vialaneix/gnn.git [released 2023-09-20 and 2023-12-19]

10at https://www.synapse.org/#!Synapse:syn2787209 [accessed 2023-11-08] (training data / Network 1 - in silico / net1 expression data.tsv and test data /

DREAM5 NetworkInference GoldStandard Network1 - in silico.tsv

Table 3. Machine learning methods tested in the original articles

(as given in Table 2) and in the current article.

Dataset Tested Code Tested

in paper availability here

BreastCancer RF, MLP, no RF, SVM, MLP,

glmgraph glmgraph, GNNo

CancerType NC RF, SVM, MLP,

GNNo

F1000 RF, MLP1 no2 RF, SVM, MLP,

GNNo

Simulated NC NC RF, SVM, MLP,

glmgraph, GNNo

DREAM5 NC NC RF, SVM, MLP,

glmgraph, GNNo

1also, k-nearest neighbors, classification trees, and linear classifiers.

2but tuned hyper-parameters are provided in their repository.

implementations are based on the C++ library LIBSVM

[31];

• random forests were implemented using the functions

included in the Python library scikit-learn and in the R

package randomForest [32].

Impact of the input graph

To challenge the usefulness of the added information in graph

based models (GNN and glmgraph), we also used the exact

same methods with different naive graphs for the dataset

BreastCancer. More precisely, we trained the same model

with:

• a very basic graph obtained from a simple thresholding of

the Pearson correlation matrix between genes. These results

are named “Cor” in the sequel;

• two dummy graphs unrelated to biological information: in

the first, we used the configuration model to obtain one

random graph, sampled uniformly at random among the

random graphs with the same degree distribution as the

original graph [33, 34]. This model consists in performing a

large enough number of random permutations between gene

edges in the original graph. The results related to this graph

are named “random”.

In addition, a complete graph is also used in place of the

original graph. Results associated to this graph are termed

“complete” in the sequel.

We chose to test this variation on BreastCancer only for

the sake of simplicity, to avoid multiplying the sources of

variations and the diversity of results. BreastCancer is the

most adequate datasets for this comparison since its relatively

moderate size allowed for the computation of all graph-based

methods (glmgraph, GNN and GNNo) on the different graphs

(some methods, like glmgraph, were too extensive to be used

with CancerType and with some F1000 datasets). Also note

that BreastCancer is one dataset that answers a biologically

relevant question (metastatic event prediction, which is a

difficult medical question) and that it exhibits contrastive

performances across methods, contrary to CancerType (see

Sections Results and Discussion).

Impact of the GNN architecture

To assess the impact of the GNN architecture and especially

of the convolutional layer part, we also trained different GNN

using different convolutional layers than the one used in the

original papers. More precisely, we trained the BreastCancer

dataset with:

• Graph convolutional layer (GCN) [22]

• GraphSage layer [35]

http://mypathsem.bioinf.med.uni-goettingen.de/resources/glrp
https://gitlab.gwdg.de/UKEBpublic/graph-lrp
https://drive.google.com/drive/folders/1_Cnvab7mIwCrNJyY-J4aR2ck9i72KH8t?usp=sharing
https://github.com/RicardoRamirez2020/GCN_Cancer
https://github.com/mmcdermott/cnn_graph
https://github.com/mmcdermott/LINCS_Deep_Learning_Benchmarks
https://doi.org/10.57745/BZ0TTC
https://doi.org/10.57745/BZ0TTC
https://forgemia.inra.fr/nathalie.villa-vialaneix/gnn.git
https://www.synapse.org/#!Synapse:syn2787209
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Again, we chose to test this variation on BreastCancer only

for the sake of simplicity and because its relatively moderate

size yields to reasonable computational times.

Performance comparison
All scripts were run on a machine with a 1.90GHz Intel Xeon

Bronze 3204 CPU with 12 cores and 128 Go of RAM. All

(Python and R) CPU scripts were run sequentially (folds were

processed one by one) to obtain the total computational time of

the method and to avoid increasing the memory consumption

artificially. The CPU scripts were all run on a single CPU core,

except random forest and MLP (from scikit-learn). MLP is

run by default using several CPU cores and the random forest

method is indeed designed for parallel training as it is based on

a large number of independent bootstrap samples. The random

forest function from the R package randomForest is not natively

made for parallel computation so we ran it sequentially (which

explains the large difference in computational time between the

two implementations; see Results).

For every simulation run, we kept

• the computational (CPU) time for the training of the

approach, the computational time to obtain predictions,

the maximum (for Python scripts) and total (for R scripts)

memory load. Python memory load was tracked using the

Python module memory-profiler and R memory load using the

R package profmem;

• for classification problems, the cross-validation accuracy,

balanced accuracy, and ROC AUC (using the one-versus-

rest approach for multi-class problems);

• for regression problems, the cross-validation mean square

error, squared correlations between predicted and true

values, and explained variance.

Results

Results on standard benchmarks from the literature
Figures 1 and 2 respectively give the cross-validation accuracy

(as reported in previous articles) and the cross-validation

balanced accuracy (which accounts for differences in class

frequencies) for all datasets across methods. In Figure 1, the

average accuracy, as reported by the authors, is shown with

a black diamond. BreastCancer results are those obtained on

unscaled data ([8] reported similar results – slightly worse for

AUC and slightly better for accuracy – on scaled data for

their GNN). CancerType results are those obtained with the

PPI network ([29] reported similar results for PPI+singleton

network for their GNN), and F1000 results are those obtained

for the prostate dataset (MOA prediction task), with the full

graph, and of the full dataset for the subtype prediction task5.

Note that, for all reported results, we obtained performances

very similar to the one obtained by the authors. Reproducibility

of the published results and methods is thus good.

GNN repeatedly stands as a good method but, in all

situations except for F1000 full, it is not the best from

the accuracy point of view. Overall, considering that GNN

is provided with the additional information of the relations

between genes, this result can be considered as a poor one.

This is especially true, since most of time the other methods

5 This is one of the prediction tasks for which GNN performed
best in the original article. The results for the other tasks are

provided in Section 3 of the Supplementary material.

(MLP, RF, and SVM) were used without any hyperparameter

tuning (default values provided by the method were used).

Tuning of hyperparameters in GNN is often not described or

commented and only final used hyperparameters are reported,

which would tend to favor this approach. Note that this result

is confirmed by the balanced accuracy, which can be considered

as more faithful considering that the classes are not perfectly

balanced. GNN shows a better balanced accuracy only for

F1000 full and, by a very small margin compared to standard

MLP, for CancerType. Finally, note that the poor result of

RF in F1000 full is already commented in the original study of

[9], who explained it by the higher heterogeneity of this dataset

compared to the prostate specific dataset: Random forest might

not be appropriate in this case, at least compared to MLP for

instance.

In addition, over the different datasets, no clear winner

method stands out and the difference of accuracy between

the methods are very small in all cases. In particular, the

CancerType performances are very stable across methods. This

is explained by the fact that the prediction task (predicting the

tissue of the cancer from gene expression) is an easy one (as is

the prediction of the tissue from gene expression which are well

separated by unsupervised methods as shown in [36]). These

results are consistently observed whatever the quality criterion,

the dataset preprocessing (scaled or not for BreastCancer), or

the used network for CancerType (co-expression, PPI, with and

without singletons), as shown in Section 3 of the Supplementary

material. As for the other tasks of F1000 full (see Section 3.3 of

the Supplementary material), similar conclusions can be drawn:

RF behaves poorly in this case and this is the only situation

in which GNN exhibits a small advantage over MLP, maybe

explained by the higher variability of this dataset.

Finally, repeatedly, we found some outlier performance in

some folds for GNN. When trying to investigate the problem

more precisely, we found that it was only due to the random

initialization of the training: changing the random seed leads

to sometimes solving for this fold but frequently creating it for

another fold. Folds with poor performances are systematically

due to a training process stuck in a zone where the loss

seems to be very flat and where the prediction function

was constant. The same problem was observed for another

implementation of ChebNet GNN, as shown in Section “Impact

of the implementation and of the hyperpameters” below.

Figures 3 and 4 respectively give the computational

times and the maximum memory load needed for training

the different methods for each dataset. In Figure 3, the

most computationally demanding method for BreastCancer

(glmgraph, taking more than 30,000 s) is not represented

for the sake of readability of the figure. In Figure 4, only

methods implemented in Python (which excludes glmgraph)

are represented to make sure that results are comparable

but Supplementary material also provides the (total) memory

load of R implementations computed with the R package

profmem (Supplementary Section 3). Note that the two are

not comparable because the Python module memory-profiler

records the evolution of memory load over time whereas the R

package profmem only records the total memory load of a given

expression, which is much larger than the previous one.

As expected, SVM computational time is strongly influenced

by the number of samples but not much by the number of

genes. Note that, when the number of classes to predict is high

(e.g. CancerType with 34 classes) the computational cost of

SVM is also increased since a one-versus-one strategy is used

for multiclass problems. GNN computational time is also often
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BreastCancer CancerType

F1000 prostate F1000 full (subtype)

Fig. 1. Cross-validation accuracy. The barplot height corresponds to the average accuracy across all folds, the dots to the individual accuracy of each

fold and the black diamond (when present) to the averaged accuracy reported by the authors.

among the largest, except for the very small F1000 prostate

dataset. Its computational time is more than twice that of

MLP and seems to be strongly impacted by the number of

nodes in the graph (see BreastCancer for which the number

of nodes is 6,888 but the sample size is small). RF and GNNo

are constantly among the less demanding methods in terms of

time. For the latter, it could seem surprising that the method

is not impacted by the large number of samples in F1000 but it

is fully explained by the number of hidden units of the model

which we chose to keep to 100 whereas the selected “optimal”

hyperparameter for MLP reported by the authors of [9] is of

the order of ten times this value (see Tables S3 and S5 in

Supplementary material).

From a memory load point of view, GNN and GNNo are

the most demanding methods, GNNo being again strongly

impacted by the number of samples. On the contrary, SVM

and MLP are not memory demanding and RF seems to

rank in-between, providing an overall good trade-off between

low computational time and low memory consumption for

classification problems (results are a bit different for regression

problems where deeper trees are usually built; see results on

simulated datasets in Supplementary Sections 3.4 and 3.5).

Finally, Supplementary Section 3 also provides training

accuracy, for which the conclusions are comparable to the test

accuracy except for Random Forest: Random Forest is designed

to interpolate data [37] and its training accuracy is thus equal

to 100%.

Impact of the implementation and of the
hyperparameters
Figure 5 gives the variation of cross-validated balanced

accuracy across implementations for the different methods. In

most situations, the achieved balanced accuracy was the same

as with the original implementation, although some methods

exhibited a variation depending on the implementation: MLP

based on keras implementation was worse than the scikit-

learn implementation for BreastCancer. On CancerType, the

original implementation of the authors of [29] gave results in

line with what was reported except for one fold which presents

an unexplained very low performance. The implementation of

[28] (called GNN+Chereda) on CancerType fixed the problem

of the bad behavior of one of the folds and produced results

comparable to MLP and to reported results. As previously

discussed, we found that it was only due to the random

initialization of the training.

Finally, on F1000 full for the subtype prediction task, the

use of default parameters of the method with an increased

number of trees provided a strong improvement of the accuracy,

both for the R (RF+R in the figure) and for the scikit-learn

(RF+no tuning in the figure) implementations (results are still

not competitive with GNN or MLP for this dataset though).

As expected, both SVM implementations (scikit-learn and R),

based on the same C++ library, gave very similar results in all

cases.

However, these improvements came sometimes at the cost

of a larger computational time or of a larger memory load

as shown in Figure 6. In particular, in all cases, the R

implementation was always much slower than the scikit-learn
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BreastCancer CancerType

F1000 prostate F1000 full (subtype)

Fig. 2. Cross-validation balanced accuracy. The barplot height corresponds to the average balanced accuracy across all folds and the dots to the

individual balanced accuracy of each fold.

BreastCancer CancerType

F1000 prostate F1000 full (subtype)

Fig. 3. Computational time (in seconds) for training the different methods.
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BreastCancer CancerType

F1000 prostate F1000 full (subtype)

Fig. 4. Maximum memory load during training (in MiB) for the different methods (Python implementation only).

implementation (but this is partially explained by the fact

that the scikit-learn implementation natively uses parallel

computing). We also found that the memory load needed by

the keras implementation of MLP is always much larger than

the one needed by the scikit-learn implementation, which might

be a side effect of the fact that keras uses GPU computation

and loads both CPU and GPU memory.

Impact of network type
The relatively low performance of GNN in the prediction task

could be explained by a poor general behavior of the approach

on this precise type of tasks or by poor inputs. More precisely,

it can be explained by a poor accuracy of the gene interaction

network. Figure 7 (left) illustrates the impact of irrelevant

networks on the method balanced accuracy on BreastCancer.

Note that GNNo and glmgraph could not be run with the

complete network (between individuals) because they were both

computationally too demanding.

For the two graph-based methods using gene networks (GNN

and glmgraph), the impact of the input network is not visible.

Surprisingly, for GNN, the complete network achieved better

performance than networks based on biological knowledge

(original, which is a PPI network) or on correlation between

gene expression (which gave the worst results). glmgraph

shows a slight improvement in using the PPI network but the

difference remains small compared to the fold variations. For

GNNo, using the true correlation network between individuals

(patients) improves the performance compared to random

network but these are still much lower than for the other

two methods based on gene networks which means that using

a patient network deteriorates the prediction performance

compared to not using it (with Random Forest for instance).

This confirms the poor usefulness of the input network, as

already reported in the previous sections.

Impact of the GNN architecture
Figure 7 (right) illustrates the type of GNN used on the

prediction performance (balanced accuracy on BreastCancer).

Compared with the original architecture proposed in [28],

Sage or GCN convolution layers deteriorate the prediction

performance. This is not a very surprising results because the

published model is expected to have been carefully designed for

the task and chosen among a variety of alternatives to achieve

state-of-the-art results.

Simulated and/or controlled data
To better assess the impact of using a gene network for

transcriptomic predictions, we relied on in silico expression

data in which the network is indeed part of the expression

generation process. Figures 8 and 9 display the mean square

error (MSE) of the prediction task across methods, respectively

for the Simulated and DREAM5 datasets.

Even if, probably due to the very small sample size, the

MSE varies strongly, graph-based methods modeling relations

between genes (GNN and glmgraph) indeed improve the

prediction MSE over standard methods that do not use this

information for the simulated dataset. This improvement is

even clearer noticing that this prediction task can be considered

as a very difficult one: Indeed, Supplementary Figure S28,

which also reports cross-validated pseudo-R2, shows negative
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BreastCancer F1000 full (subtype)

CancerType

Fig. 5. Cross-validation balanced accuracy for various implementations of the same method. The barplot height corresponds to the average balanced

accuracy across all folds and the dots to the individual balanced accuracy of each fold.

Fig. 6. CancerType. Computational time (in seconds; left) and maximum memory load (in MiB; right) for training with various implementations.

average pseudo-R2 for all methods except for GNN and

glmgraph (and, to a lesser extent for SVM). Finally, GNNo,

which only uses information of proximity between individuals

does not provide a noticeable improvement compared to

baseline machine learning methods (and also has an average

negative R2).

Similarly, graph predictions methods perform among the

best for DREAM5, only competing with SVM for the best test

MSE but much better, here, than MLP and RF. Again, GNNo

has very low predictive performances.

Finally, Figure 10 shows the impact of using a non relevant

network in the prediction for Simulated. For GNN, the impact

of the complete network, which should be similar to the
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Fig. 7. BreastCancer. Cross-validation balanced accuracy for graph-based methods with various input graphs and for GNN methods with varying

architecture. The barplot height corresponds to the average balanced accuracy across all folds and the dots to the individual balanced accuracy of each

fold.

Fig. 8. Simulated. Cross-validation mean squared error across methods.

Fig. 9. DREAM5. Cross-validation mean squared error across methods.

absence of additional information, is the worst, whereas the

random graph has performance similar to the correlation

network. This indicates that correlation networks, which is a

method frequently used for network inference, probably provide

information that is of low interest for the prediction purpose.

Note that this impact is not visible on the glmgraph model,

which is steadily providing the same MSE whatever the input

network.

Discussion and conclusion

GNN has repeatedly been claimed to improve transcriptome-

to-phenotype prediction by accounting for relations between

genes, but our simulations show a slightly different story.

Indeed, standard ML methods, not explicitly accounting for

the dependency structure between genes, frequently obtain

better or comparable performance on the prediction task.

These results were found when comparing with both the GNN

convolving on the gene network and the GNNo convolving on

the sample network.

In addition, the computational efforts requested by the

training of GNN are often overlooked: indeed, Table 4 compares

the number of learned parameters for neural network-based

methods and shows that the complexity of the trained GNN

models is often very large. It is frequently of an order of

magnitude larger than for the other approaches, which leads

to an increased computational time and memory for learning.

The computational cost of the tuning of the model has never

been included in the comparison: RF is known to be very

insensitive to hyperparameter choices and default values for

the few choices that have to be made (in combination with

a reasonable – larger than 500 – number of trees) is usually

sufficient to obtain good performance for this method. On the

contrary, the number of hyperparameters that have to be set

for GNN is large: in addition to hyperparameters listed in the

Table S2 of Supplementary material, the architecture, type

of convolution, ... have to be designed. This design is rarely

explained or documented but we can expect that it also comes

at the cost of a large computational time and comparison with

alternative architecture tends to show that the performance can

be quite sensitive to these choices.

Our conclusion were not due to the fact that we were not

able to reproduce GNN performances published by the authors.

Most of the time, the provided implementation, description of

hyperparameters and preprocessing were sufficient to recover

the performances of GNN as published in the articles. However,

the corresponding code and hyperparameters for concurrent

ML methods were rarely given (with the exception of [9]) and

not even performing hyperparameter tuning, we found that

RF and MLP could obtain comparable or better performances.

More surprisingly, using GNN in combination with irrelevant

networks (random or complete) also led to comparable or

better results than using the gold-standard network used by
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Fig. 10. Simulated. Cross-validation mean squared error for graph-based methods with different input graphs.

Table 4. Total number of learned parameters for the neural network-based approaches (MLP, GNNo, GNN). The results are missing for

GNNo for the F1000 full dataset due to memory issue as the graph between observations contains 156,461 nodes. OOM: out-of-memory.

Total nb. params MLP MLP+keras GNNo GNN

BreastCancer 689,102 689,502 1,378,302 41,166,018

CancerType
PPI 447,934 448,334 892,734 49,804,514 / 3,848,228 (Ramirez)

Expr 390,134 390,534 777,134 18,773,218 / 2,179,108 (Ramirez)

F1000 prostate MOA 985,045 99,209 197,009 2,056,869

F1000 full
MOA 981,789 103,249 OOM 1,064,885

Subtype 990,035 99,714 OOM 5,559,401

Primary Site 988,039 99,512 OOM 4,751,043

Simulated 2301 271 481 49,697

DREAM5 156,601 157,001 313,401 19,866,689

the authors (a fact that is already mentioned by [8]): This,

itself, is enough to indicate that the graph information is

not relevant for phenotype prediction in this model. Hence,

in addition to speak in favor of a more complete report of

the benefit of models by accounting for complexity and for

the global computational cost evaluation, we want to point

that reproducibility of some articles could be improved by

a more complete report of the results: the complete code

of the comparison should be provided (not just the code of

the method) together with used libraries/functions/languages,

hyperparameter values, fold definition (if CV is performed,

which is desirable) and control of the randomness. The

variability over folds is frequently reported but should also

be discussed in comparison with the difference in average

performances. In our experiments, the confidence interval of

the average performance (as given by the folds) are frequently

overlapping, showing no significant differences between method

performances. In this situation, even a modification of the

random seed for method incorporating some random process

(as random forest) or a modification of the fold definition could

change the ranking of the methods in term of performances.

CancerType shows surprisingly stable (and very good)

results, over method choices but also hyperparameter variations

for all methods (we even varied GNN hyperparameters for this

dataset, with no variation of the performance in this case

also). Thus, we think that this benchmark, which is frequently

used to test classification methods from gene expression data,

is probably not really appropriate for comparison purpose.

Indeed, the first use of this dataset is from [38] who used it to

propose a feature selection method that extracted biomarkers

specific of the different cancer types. Hence, there is little

practical interest in discussion classification performance on

this dataset since i) the question of being able to predict the

tissue (“type”) of a given tumor from expression data has

low (if any) medical interest (this tissue is usually known by

design) and ii) the performance of a classification method is

not directly related to the relevance of biomarkers that can

be extracted from these methods (typically, methods including

feature selection in the model design, like the one described in

[38], are expected to show lower classification accuracy that

methods using all gene expressions like the GNN approach

discussed in [29]). Very few datasets are readily available to

benchmark the usefulness of PPI or regulatory networks in

expression-to-phenotype prediction tasks: The present work

relies on three published datasets and two simulated dataset

and none of them was based on the promising single-cell

transcriptomic technology. Providing the community with a

larger and more diverse benchmark, augmented with other

datasets than the ones we have provided in this article, and/or
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organizing a challenge (as DREAM) would be valuable to fairly

discuss the development of methods like GNN.

Finally, our simulated dataset examples gave some hope

for methods using gene networks for phenotype prediction:

in the smallest example, the network used for the training

is the one which actually generated our synthetic phenotype.

When this ground true network is used in graph-based models,

it indeed improves the performance. Even if GNN do not

outperform SVM and glmgraph in DREAM5, it shows much

larger improvement over MLP and RF than in real-life datasets.

Its lower performance for DREAM5 (compared to Simulated)

could be explained by the larger dataset size, which increases

the number of convolution parameters of these models, or

to a prediction task less directly related to the network: in

Simulated, the target is a protein level at time t generated

from gene expression at time t − 1, whereas DREAM5 is a

steady-state problem in which the target and gene expression

are observed at the same time step. Since expression regulation

is a dynamic process, this could reduce the network impact in

the prediction.

Moreover, a recent benchmark [39] obtained competitive

performance for the prediction of ncRNA-disease associations

with GNN but this problem is formulated in a different way

where the GNN task is to predict links in the input graph

and not an external value using the graph: It might be worth

of interest to investigate if, more generally, GNN might be

more adapted to link prediction tasks than to graph property

prediction tasks.

Key points

• Graph neural network (GNN) has repeatedly been claimed

to improve transcriptomic prediction by accounting for

relations among genes.

• However, benchmarking with real datasets shows similar

performances for simpler machine learning methods than

for GNN.

• In addition, benchmarking with real expression datasets and

irrelevant networks do not show decrease in performance

compared to using a biologically relevant gene network.

• Benchmarking with simulated data shows that GNN might

be relevant when the gene network is perfectly known.

• The lack of improvement for GNN with real data might be

due to the low accuracy of available gene networks.
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Grialou for his help setting the server for computation, and

the Graph Neural Network working group at INRAE Toulouse

for interesting comments and references.

Data availability

The data underlying this article were provided as described

articles [8, 29, 9] (see details in Table 2) or, if produced

by authors of the present article, they are available in

recherche.data.gouv.fr at https://doi.org/10.57745/BZ0TTC.

The scripts underlying this article are available at https:

//forgemia.inra.fr/nathalie.villa-vialaneix/gnn.git.

References

1. Giovanna Nicora, Francesca Vitali, Arianna Dagliati,

Nophar Geifman, and Riccardo Bellazzi. Integrated multi-

omics analyses in oncology: A review of machine learning

methods and tools. Frontiers in Oncology, 10:1030, 2020.

2. Khoa A. Tran, Olga Kondrashova, Andrew Bradley,

Elizabeth D. Williams, John V. Pearson, and Nicola

Waddell. Deep learning in cancer diagnosis, prognosis and

treatment selection. Genome Medicine, 13:152, 2021.

3. Konstantina Kourou, Themis P. Exarchos, Konstantinos P.

Exarchos, Michalis V. Karamouzis, and Dimitrios I.

Fotiadis. Machine learning applications in cancer

prognosis and prediction. Computational and Structural

Biotechnology Journal, 13:8–17, 2015.

4. Franck Rapaport, Andrei Zinovyev, Marie Dutreix,

Emmanuel Barillot, and Jean-Philippe Vert. Classification

of microarray data using gene networks. BMC

Bioinformatics, 8:35, 2007.

5. Caiyan Li and Hongzhe Li. Network-constrained

regularization and variable selection for analysis of genomic

data. Bioinformatics, 24(9):1175–1182, 2008.

6. Davide Bacciu, Federico Errica, Alessio Micheli, and Marco

Podda. A gentle introduction to deep learning for graphs.

Neural Networks, 129:203–221, 2020.

7. Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang,

Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,

and Maosong Sun. Graph neural networks: A review of

methods and applications. AI Open, 1:57–81, 2020.

8. Hryhorii Chereda, Annalen Bleckmann, Kerstin Menck,
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Céline Brouard is a permanent researcher at INRAE and
develops machine learning approaches for bioinformatics.
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