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Sketch of this lesson

Issue at stake:

I short overview of different random graph models

I tests based on these models to assess the significance of
numerical characteristics or of attributes

Nathalie Vialaneix | Graph mining 2/29



Notations for this class

Notations

In the following, a graph G = (V ,E,W) with:
I V : set of vertices {x1, . . . , xn};
I E: set of (undirected) edges. m = |E |;
I W : weights on edges s.t. Wij ≥ 0, Wij = Wji and Wii = 0 (also

called, adjacency matrix).

If needed, attributes for the nodes will be denoted by fj(xi) (jth
attribute for node i) and attributes for the edges (other than the
weights) by gj(xi , xi′) (jth attribute for the edge (xi , xi′)).
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Outline

Some standard random graph models

Permutation tests

Permutation tests for testing vertex labels
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Some well known models studied in this class...

I Erdös-Rényi model [Erdös and Rényi, 1959] first and simplest
random graph model in which the probability to observe an
edge between two vertices is uniform over all pairs of vertices

I scale free model [Barabási and Albert, 1999] network in which
the degree distribution fits a power law

I Stochastic Block Model [Snijders and Nowicki, 1997] random
graphs with a community structure
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Erdös-Rényi model

2 closely related Erdös-Rényi models:
I G(n,m) the first method consists to set a number of vertices,

n, and a number of edges, m, and to choose one graph
uniformly at random among the set of graphs with n vertices
and m edges;

I G(n, p) the second method consists to set a number of
vertices, n, and the probability, p, to decide, for every pair of
vertices, if an edge exists between the two vertices,
independantly at random with probability p
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Some properties of ER graphs G(n, p)

I E(number of edges in G(n, p)) =
(

n
2

)
p

I degree distribution is binomial:

P(di = k) =
(

n − 1
k

)
pk (1 − p)n−1−k

I diameter ∼ log n
log(np) [Albert and Barabási, 2002]

I depending on whether p <
(1−ε) log n

n or p >
(1+ε) log n

n ,

P(G(n, p) contains isolated vertices)
n→+∞
−−−−−−→ 1 or

P(G(n, p) is connected)
n→+∞
−−−−−−→ 1
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scale free model
Network is a network whose degree distribution (asymptotically)
follows a power law:

P(di = k) = k−γ

for a γ ∈]2, 3[ (in general).

Widely used model: Barabási-Albert model
[Albert and Barabási, 2002]:
I vertices are added one at at time;
I the new vertex xn+1 has a probability to be connected to

vertex xi equal to di∑
j dj

.

Source: By Horváth Árpád, CC BY-SA 3.0
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Some properties of BA and scale free graphs

I Degree distribution of BA graph: scale free with γ = 3

I [Cohen and Havlin, 2003] depending on whether γ < 3, γ = 3
and γ > 3, the average shortest path length is of order
log log n (“ultra-small worlds”), log n

log log n or log n
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SBM

SBM with n vertices are random graphs for which a partition of the
vertices, C1, . . . , CK is given, for which the probability that a vertex
xi ∈ Ck and a vertex xj ∈ Ck ′ are connected, has a probability
πkk ′ ∈ [0, 1].

Some results describe the conditions for which the partition can be
recovered (for a number of vertices that tends to +∞), according to
the relation between the intra/inter-block probabilities.
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Comparison with random graphs...

Erdos-Renyi model with the same number of nodes and the same
number of edges than the original graph G(n,m)

Method: compare the observed values with those of a large
number of randomly generated random graphs (with no loop, only
connected graphs are kept)
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Results of the comparison with random graphs...
For B = 500 graphs (only connected graphs are kept), we have:

density transitivity diameter radius girth cohesion
X Min. :0.0725 Min. :0.0523 Min. :4.00 Min. :3 Min. :3 Min. :1.00

X.1 1st Qu.:0.0725 1st Qu.:0.0679 1st Qu.:4.00 1st Qu.:3 1st Qu.:3 1st Qu.:2.00
X.2 Median :0.0725 Median :0.0721 Median :4.00 Median :3 Median :3 Median :3.00
X.3 Mean :0.0725 Mean :0.0722 Mean :4.11 Mean :3 Mean :3 Mean :2.52
X.4 3rd Qu.:0.0725 3rd Qu.:0.0762 3rd Qu.:4.00 3rd Qu.:3 3rd Qu.:3 3rd Qu.:3.00
X.5 Max. :0.0725 Max. :0.0971 Max. :5.00 Max. :3 Max. :3 Max. :4.00

which has to be compared to 0.072, 0.56, 18, 9, 3 and 1.

I the transitivity is much larger;
I the diameter and the radius are much larger also;
I the cohesion is smaller.

The first remark indicates a stronger local connectivity in my NVV
network than in ER models with same number of nodes and
edges. Large radius and diameter are explained by an isolated
branch in the network.
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Comparison with random graphs...

Scale free model: Barabási and Albert model is used with a
number of edges added at each step which is chosen so that the
final number of edges resembles that of the original graph (4
edges, which gives 478 edges in the final graph, compared to 535
in the real NVV network.

Method: compare the observed values with those of a large
number of randomly generated random graphs
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Results of the comparison with random graphs...

For B = 500 graphs, we have:

density transitivity diameter radius girth cohesion
X Min. :0.0648 Min. :0.105 Min. :4 Min. :2.00 Min. :3 Min. :4

X.1 1st Qu.:0.0648 1st Qu.:0.117 1st Qu.:4 1st Qu.:3.00 1st Qu.:3 1st Qu.:4
X.2 Median :0.0648 Median :0.121 Median :4 Median :3.00 Median :3 Median :4
X.3 Mean :0.0648 Mean :0.121 Mean :4 Mean :2.98 Mean :3 Mean :4
X.4 3rd Qu.:0.0648 3rd Qu.:0.125 3rd Qu.:4 3rd Qu.:3.00 3rd Qu.:3 3rd Qu.:4
X.5 Max. :0.0648 Max. :0.138 Max. :4 Max. :3.00 Max. :3 Max. :4

which has to be compared to 0.072, 0.56, 18, 9, 3 and 1.

I the transitivity is still much larger;
I the diameter and the radius are much larger also;
I the cohesion is much smaller.

The first remark indicates a stronger local connectivity in my NVV
network than in BA models with same number of nodes and edges.
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Outline

Some standard random graph models

Permutation tests

Permutation tests for testing vertex labels
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Limits of the previous approaches

Until now, we have compared the real graph to graphs randomly
generated according to a given random model but:

I this approach only gives information about global
characteristics of the observed graph;

I none of the distributions of the current characteristics is
preserved during the process, especially not the degree
distribution which is central for controlling local/global
connectivity, counts of specific patterns...
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A null model closer to the real graph...

Sketch of statistical tests on graphs

1. sample at random within the set of graphs with the same
degree distribution than the observed graph (B times)

2. compute a numerical statistics for each of these randomly
generated graphs

3. compare the observed value of the statistics and its
distribution over the random graphs, a p-value can be derived
(for B large enough)

Two main approaches to sample at random with fixed degrees:
I configuration model [Bender and Canfield, 1978]

I permutation approach [Rao et al., 1996, Roberts Jr., 2000]
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Sampling at random within the set of graphs with a given
degree distribution

Aim:
I all graphs can exhaustively be sampled
I all graphs have the same probability to be sampled

⇒ MCMC approach

Method:
1: Start from the observed graph G
2: for t = 1→ T |E | do
3: Select uniformly at random two edges e1 = (x1

i , x
1
j ) and e2 = (x2

i , x
2
j ) ∈ E

4: E′ ← E \ {e1, e2} ∪ {e1
s , e

2
s } with e1

s = (x1
i , x

2
j ) and e2

s = (x2
i , x

1
j )

5: if G′ = (V ,E′) is simple and connected then
6: G ← G′

7: end if
8: end for
9: return G
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In practice... (for the transitivity)

This method is used in [Milo et al., 2004] with T = 100.
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Again, this is evidence for a strong local connectivity in the
network.
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In practice... (for the vertex characteristics)
Find a(n empirical) p-value for all vertices which indicates if its
betweenness is higher or lower than expected with respect to its
degree: ratio of random graphs for which the observed
betweenness is higher (resp. lower) than 95% of the
betweennesses for the corresponding vertex in random graphs.
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Using random graphs to assess the relevance of the
clustering

Method:
I Find the clustering associated to the maximum modularity.

I Compare this modularity with the distribution of maximum
modularities over B random graphs obtained by edge
permutation.
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Relevance of the clustering of NVV
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More on random graphs generation

Sometimes, one wants to compare the observed graph with a
more sophisticated (constrained) null model (taking into account
some additional information on edges or nodes for instance):

I This can be achieved using the same principle and throwing
away the random graphs which do not satisfy the constrains.

Warning: The more sophisticated the model is, the more
costly the simulation would be. For instance, only removing
graphs with multiple edges and graphs which are not
connected leads to throw away 53 graphs during the previous
generation process.

I Possible solution: [Tabourier and Cointet, 2011] use multiple edge
switching to improve such simulations.
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Outline

Some standard random graph models

Permutation tests

Permutation tests for testing vertex labels
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General setting

A label f(xi) is given for all vertices in the graph.

Question: Are the labels “related” to the graph structure? e.g.
I connected nodes tend to have similar labels;
I OR connected nodes tend to have opposite labels.
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Join Count Statistics
First case: binary labels f(xi) ∈ {0, 1}

Derived statistics:
I Number of “1” labels in the neighbor of a vertex labelled “1”

JC1 =
1
2

∑
i,j: f(xi)=f(xj)=1

Wij

I Number of “0” labels in the neighbor of a vertex labelled “0”

JC0 =
1
2

∑
i,j: f(xi)=f(xj)=0

Wij

I Number of “1” labels in the neighbor of a vertex labelled “0”
(and the opposite)

JC0−1 =
∑

i,j: f(xi)=0, f(xj)=1

Wij
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Interpretation

Basic interpretation: If JC1 is “large” (“small”) then vertices labelled
“1” in the network tend to be connected with vertices labelled the
same way (or tend not to be related to vertices labelled “1”).

Statistical significance: When is JC1 significantly large or small?
I Method 1: [Noether, 1970] proves the asymptotic normal

distribution of JC1: requires additionnal assumptions on the
network and not valid for small networks;

I Method 2: Monte Carlo approach: Randomly permute the
values f(xi) over the vertices, B times (where B is large) and
obtain the empirical distribution of JC1. Compare with the true
JC1.
⇒ Estimation of the distribution of JC1 given the network and
the numbers of labels “1” and “0”.

Nathalie Vialaneix | Graph mining 27/29



Interpretation

Basic interpretation: If JC1 is “large” (“small”) then vertices labelled
“1” in the network tend to be connected with vertices labelled the
same way (or tend not to be related to vertices labelled “1”).

Statistical significance: When is JC1 significantly large or small?
I Method 1: [Noether, 1970] proves the asymptotic normal

distribution of JC1: requires additionnal assumptions on the
network and not valid for small networks;

I Method 2: Monte Carlo approach: Randomly permute the
values f(xi) over the vertices, B times (where B is large) and
obtain the empirical distribution of JC1. Compare with the true
JC1.
⇒ Estimation of the distribution of JC1 given the network and
the numbers of labels “1” and “0”.

Nathalie Vialaneix | Graph mining 27/29



Interpretation

Basic interpretation: If JC1 is “large” (“small”) then vertices labelled
“1” in the network tend to be connected with vertices labelled the
same way (or tend not to be related to vertices labelled “1”).

Statistical significance: When is JC1 significantly large or small?
I Method 1: [Noether, 1970] proves the asymptotic normal

distribution of JC1: requires additionnal assumptions on the
network and not valid for small networks;

I Method 2: Monte Carlo approach: Randomly permute the
values f(xi) over the vertices, B times (where B is large) and
obtain the empirical distribution of JC1. Compare with the true
JC1.
⇒ Estimation of the distribution of JC1 given the network and
the numbers of labels “1” and “0”.

Nathalie Vialaneix | Graph mining 27/29



FB network and connection gender
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JC for pink vertices

co
un

t
JC for pink vertices − random permutations

girls tend not to be particularly more connected with other girls that
what could be expected by random choice
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Continuous labels with Moran’s I

[Moran, 1950] proposes to measure spatial correlation with the I
statistics:

I =
1

2m
∑

i,j Wij f(xi)f(xj)

1
n
∑

i f(xi)
2

where m = 1
2
∑

i,j Wij and f(xi) = f(xi) − f with f = 1
n
∑

i f(xi).

Interpretation: When I is “large”, vertices tend to be connected to
other vertices having similar labels; when I is “small”, vertices tend
to be connected to other vertices having opposite labels. Average I
means that there is no special relation between labels and the
graph structure.

Deriving a test for I: again, asymptotic normality can be proved or
using a Monte Carlo simulation is also possible.
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