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o Co-expression analysis introduction

9 Unsupervised clustering
@ Centroid-based clustering: K-means, HCA
@ Model-based clustering
@ Mixture models for RNA-seq data

e Conclusion / discussion
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Aims for this talk

@ What is the biological/statistical meaning of co-expression for
RNA-seq?

@ What methods exist for performing co-expression analysis?

@ How to choose the number of clusters present in data?

@ Advantages / disadvantages of different approaches: speed,
stability, robustness, interpretability, model selection, ...
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Design of a transcriptomics project

| Biological question |

1T

| Experimental design |

]
| Data acquisition |
]

| Data analysis: |

Normalization, differential analysis, clustering, networks, ...
1
Validation
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Gene co-expression’
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Gene co-expression is...

@ The simultaneous expression of two or more genes?
@ Groups of co-transcribed genes®

@ Similarity of expression? (correlation, topological overlap, mutual
information, ...)

@ Groups of genes that have similar expression patterns® over a
range of different experiments

2https://en.wiktionary.org/wiki/coexpression
3http://bioinfow.dep.usal.es/coexpression
“http://coxpresdb.jp/overview.shtml

Yeung et al. (2001)

Eisen et al. (1998)

ED& MLMM& AR Co-expression analysis of RNA-seq data INRA 6/42



Gene co-expression is...

@ The simultaneous expression of two or more genes?
@ Groups of co-transcribed genes®

@ Similarity of expression? (correlation, topological overlap, mutual
information, ...)

@ Groups of genes that have similar expression patterns® over a
range of different experiments

@ Related to shared regulatory inputs, functional pathways, and
biological process(es)®

2https://en.wiktionary.org/wiki/coexpression
3http://bioinfow.dep.usal.es/coexpression
“http://coxpresdb.jp/overview.shtml

Yeung et al. (2001)

Eisen et al. (1998)
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From co-expression to gene function prediction

@ Transcriptomic data: main source of ‘omic information available for
living organisms
e Microarrays (~1995 -)
e High-throughput sequencing: RNA-seq (~2008 - )

Co-expression (clustering) analysis

@ Study patterns of relative gene expression (profiles) across
several conditions

@ = Co-expression is a tool to study genes without known or
predicted function (orphan genes)

@ Exploratory tool to identify expression trends from the data
(# sample classification, identification of differential expression)

v
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RNA-seq profiles for co-expression
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RNA-seq profiles for co-expression
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RNA-seq profiles for co-expression
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RNA-seq profiles for co-expression
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Unsupervised clustering

Objective

Define homogeneous and well-separated groups of genes from
transcriptomic data

What does it mean for a pair of genes to be close?
Given this, how do we define groups?
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Unsupervised clustering

Objective

Define homogeneous and well-separated groups of genes from
transcriptomic data

What does it mean for a pair of genes to be close?
Given this, how do we define groups?

Two broad classes of methods typically used:
@ Centroid-based clustering (K-means and hierarchical clustering)
© Model-based clustering (mixture models)
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Similarity measures

Similarity between genes is defined with a distance:

e Euclidian distance (L2 norm): d?(y;,yi) = >0_,(Vie — Yie)?
= Note: sensitive to scaling and differences in average
expression level
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Similarity measures

Similarity between genes is defined with a distance:

Euclidian distance (L2 norm): a?(y;,¥i) = >-0_,(Vie — Yie)?
= Note: sensitive to scaling and differences in average
expression level

Pearson correlation coefficient: dyc(y;,¥ir) =1 — pijr

Spearman rank correlation coefficient: as above but replace
with rank of gene g across all samples j

Absolute or squared correlation: dac(y;,yi) =1 — |piir| or
dSC(yia yi’) =1- p,‘2’,'/
Manhattan distance: dvannattan(Yi, Y1) = >_s—1 [Vie — Yirel
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Inertia measures

Homogeneity of a group is defined with an inertia criterion:

@ Letyp be the centroid of the dataset and y, the centroid of group
Ck

G
Inertia = " d*(y;, yp)
g—1

—Z > d(yiye,) +and Yo..Yo)

k=1 geCy
= within-group inertia + between—group inertia
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In practice...

Objective: cluster G genes into K groups,
maximizing the between-group inertia J

@ Exhaustive search is impossible
@ Two algorithms are often used

@ K-means
@ Hierarchical clustering
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K-means algorithm

Initialization K centroids are chosen ramdomly or by the user

lterative algorithm

@ Assignment Each gene is assigned to a group according to its
distance to the centroids.

@ Calculation of the new centroids

Stopping criterion: when the maximal number of iterations is achived
OR when groups are stable
Properties

@ Rapid and easy

@ Results depend strongly on initialization

@ Number of groups K is fixed a priori
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K-means illustration
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Animation: http://shabal.in/visuals/kmeans/1.html
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http://shabal.in/visuals/kmeans/1.html

K-means algorithm: Choice of K?

@ Elbow plot of within-sum of squares: examine the percentage of
variance explained as a function of the number of clusters
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Dim 1 Number of clusters

@ Gap statistic: estimate change in within-cluster dispersion
compared to that under expected reference null distribution

@ Silhouette statistic: measure of how closely data within a cluster is
matched and how loosely it is matched to neighboring clusters
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Hierarchical clustering analysis (HCA)

Objective Construct embedded partitions of (G, G —1,...,1) groups,
forming a tree-shaped data structure (dendrogram)
Algorithm

@ Initialization G groups for G genes

@ At each step:

e Closest genes are clustered

e Calculate distance between this new group and the
remaining genes
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Distances between groups for HCA

Distances between groups
@ Single-linkage clustering:

D(Cx, Ck) = min min d?(y,y")
yeCx y’ ECk/

@ Complete-linkage clustering:

D(Cx, Cx/) = max max d?(y,y’)
yeCx y'eCps

@ Ward distance:

N Ny
D(Cx, Ci) = (e, ¥c,) X ——

Ny + Ny

where ny is the number of genes in group Ck
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Distances between groups for HCA

- Simple linkage - Average linkage - Complete linkage
LY
b A b
x N x % s
= L
x x x
x % x % % X

Source: http://compbio.pbworks.com/w/page/16252903/Microarray%20Clustering%20Methods%20and%20Gene%200ntology
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HCA: additional details

Properties:
@ HCA is stable since there is no initialization step
@ K is chosen according to the tree
@ Results strongly depend on the chosen distances
@ Branch lengths are proportional to the percentage of inertia loss
= a long branch indicates that the 2 groups are not homogeneous
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Model-based clustering

@ Probabilistic clustering models : data are assumed to come from
distinct subpopulations, each modeled separately

@ Rigourous framework for parameter estimation and model
selection

@ Output: each gene assigned a probability of cluster membership

what we observe the model the expected results

Z="7 Z:1=e2=03=0
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Key ingredients of a mixture model

@ Lety = (y1,...,Yn) denote the observations with y; ¢ R?

@ We introduce a latent variable to indicate the group from which
each observation arises:

P(Zi = k) = 7k

@ Assume that y; are conditionally independent given Z;
@ Model the distribution of y;|Z; using a parametric distribution:

(YilZi = k) ~ (- 6k)
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Questions around the mixtures

@ Model: what distribution to use for each component ?
~» depends on the observed data.

@ Inference: how to estimate the parameters ?
~ usually done with an EM-like algorithm (Dempster et al., 1977)

@ Model selection: how to choose the number of components ?

@ A collection of mixtures with a varying number of components is
usually considered

o A penalized criterion is used to select the best model from the
collection
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Clustering data into components

Distributions: Conditional probabilities:
g f (X
9(x) = mifi(x) + m2ha(x) + mahs(X) Tik:L(XI)

9(x;)

8

84

Maximum a posteriori (MAP) rule: Assign genes to the component with
highest conditional probability 7:

i (%) k=1 k=2 k=3
i=1 65.8 34.2 0.0
=2 0.7 47.8 515
i=3 0.0 0.0 100
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Model selection for mixture models

Asymptotic penalized criteria’

@ BIC aims to identify the best model K wrt the global fit of the data
distribution:

BIC(K) = — log P(y|K, dx) + %K log(n)

where v is the # of free parameters and 0k is the MLE of the
model with K clusters

@ |CL aims to identify the best model K wrt cluster separation:

ICL(K) = BIC(K ( ZZm log le)

i=1 k=1

~+ Select K that minimizes BIC or ICL (but be careful about their sign!)

" Asymptotic: approaching a given value as the number of observations n — oo
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Model selection for mixture models: BIC vs ICL
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Model selection for mixture models
Non-asymptotic penalized criteria

Recent work has been done in a non-asymptotic context using the
slope heuristics (Birgé & Massart, 2007):

SH(K) = log P(y|K, é\K) + ’ipenshape(K)

@ In large dimensions, linear behavior of % — —vn(8p)
@ Estimation of slope to calibrate % in a data-driven manner
(Data-Driven Slope Estimation = DDSE), capushe R package
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Finite mixture models for RNA-seq

Assume data y come from K distinct subpopulations, each modeled
separately:

n K
fYIK, Vi) =[] mxfilyii 0x)
i=1 k=1
@ w = (m,...,mx) are the mixing proportions, where Zf:1 Tk =1

@ f, are the densities of each of the components
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Finite mixture models for RNA-seq

Assume data y come from K distinct subpopulations, each modeled
separately:

n K
fYIK, Vi) =[] mxfilyii 0x)
i=1 k=1
@ w = (m,...,mx) are the mixing proportions, where Zf:1 Tk =1

@ f, are the densities of each of the components

@ For microarray data, we often assume y;|k ~ MVN(z, £k)
@ What about RNA-seq data”?
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Finite mixture models for RNA-seq data

n K
FYIK, Wi) = [T mkfi(yil6x)

i=1 k=1

For RNA-seq data, we must choose the family & parameterization of
e (-):

@ Directly model read counts (HTSCluster):

J
VilZ = k ~ ] ] Poisson(y;lux)
=1

© Apply appropriately chosen data transformation (coseq):

9(y)|Zi = k ~ MVN(uk, k)
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Poisson mixture models for RNA-seq (Rau et al,,

2015)

J
YilZi =k ~ H Poisson(yji i)
=1

Question: How to parameterize the mean p;j to obtain meaningful
clusters of co-expressed genes? J
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Poisson mixture models for RNA-seq (Rau et al,,

2015)

J
YilZi =k ~ H Poisson(yji i)
=1

Question: How to parameterize the mean p;j to obtain meaningful
clusters of co-expressed genes? J

Kik = WiAjkS;

@ w; : overall expression level of observation i (y;.)

@ )¢ = (\jx) : clustering parameters that define the profiles of genes
in cluster k (variation around w;)

@ s; : normalized library size for sample j, where Zj sj=1
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Behavior of model selection in practice for

RNA-seq
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Discussion of PMM for RNA-seq data

Advantages:
@ Directly models counts (no data transformation necessary)
© Clusters interpreted in terms of profiles around mean expression
© Implemented in HTSCluster package on CRAN (v1.0.8)
© Promising results on real data...
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Discussion of PMM for RNA-seq data

Advantages:
@ Directly models counts (no data transformation necessary)
© Clusters interpreted in terms of profiles around mean expression
© Implemented in HTSCluster package on CRAN (v1.0.8)
© Promising results on real data...

Limitations:
@ Slope heuristics requires a very large collection of models to be fit

© Restrictive assumption of conditional independence among
samples

© Cannot model per-cluster correlation structures
© Poisson distribution requires assuming that mean = variance
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Correlation structures in RNA-seq data
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Example: data from Mach et al. (2014) on site-specific gene expression along the gastrointestinal tract of 4 healthy piglets
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Gaussian mixture models for RNA-seq

Idea: Transform RNA-seq data, then apply Gaussian mixture models J

Several data transformations have been proposed for RNA-seq to
render the data approximately homoskedastic:

@ log,(yj + )

@ Variance stabilizing transformation (DESeq)
@ Moderated log counts per million (edgeR)
@ Regularized log-transformation (DESeq2)

... but recall that we wish to cluster the normalized profiles
o _Yils
pij = >0 Yie/ S
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Remark: transformation needed for normalized

profiles

@ Note that the normalized profiles are compositional data, i.e. the
sum for each gene p;. = 1

@ This implies that the vector p; is linearly dependent = imposes
constraints on the covariance matrices ¥, that are problematic for
the general GMM

@ As such, we consider a transformation on the normalized profiles
to break the sum constraint:
By = 9lpy) = aresin (/)
And fit a GMM to the transformed normalized profiles:
n K

fRIK, Vi) =D mxe(BilOk, Zk)

i=1 k=1
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Running the PMM or GMM for RNA-seq data with

coseq

> library (coseq)

>

> GMM <- coseqg(counts, K=2:10, model="Normal",

> transformation="arcsin")

> summary (GMM)

> plot (GMM)

>

> ## Note: indirectly calls HTSCluster for PMM
> PMM <- coseqg(counts, K=2:10, model="Poisson",
> transformation="none")

> summary (PMM)

> plot (PMM)
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Examining GMM results
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Examining GMM results
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Examining GMM results
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Evaluation of clustering quality
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Evaluation of clustering quality
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Conclusions: RNA-seq co-expression

Some practical questions to consider prior to co-expression analyses:

@ Should all genes be included?
Screening via differential analysis or a filtering step (based on
mean expression or coefficient of variation)...
~ Usually a good idea, genes that contribute noise will affect
results!

@ What to do about replicates?
Average, or model each one independently?
~> Note that the PMM makes use of experimental condition labels,
but the GMM does not...
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A note about clustering approaches?®

@ Clustering results can be evaluated based on internal criteria
(e.g., statistical properties of clusters) or external criteria (e.g.,
functional annotations)

@ Preprocessing details (normalization, filtering, dealing with
missing values) can affect clustering outcome

@ Methods that give different results depending on the initialization
should be rerun multiple times to check for stability

@ Most clustering methods will find clusters even when no actual

structure is present = good idea to compare to results with
randomized datal!

8D’haeseller, 2005
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A note about validating clustering approaches on

real data

@ Difficult to compare several clustering algorithms on a given
dataset (and difficult to discern under which circumstances a
particular method should be preferred)

o Adjusted Rand index: measure of similarity between two data
clusterings, adjusted for the chance grouping of elements
~+ ARI has expected value of 0 in the case of a random partition,
and is bounded above by 1 in the case of perfect agreement

ED& MLMM& AR Co-expression analysis of RNA-seq data INRA 40/ 42



A note about validating clustering approaches on

real data

@ Difficult to compare several clustering algorithms on a given
dataset (and difficult to discern under which circumstances a
particular method should be preferred)

o Adjusted Rand index: measure of similarity between two data
clusterings, adjusted for the chance grouping of elements
~+ ARI has expected value of 0 in the case of a random partition,
and is bounded above by 1 in the case of perfect agreement

@ Difficult to evaluate how well a given clustering algorithm performs
on transcriptomic data

@ No one-size-fits-all solution to clustering, and no consensus of
what a “good” clustering looks like = use more than one
clustering algorithm!
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Final thoughts®

E i There is no single best criterion for

obtaining a partition because no precise and workable
definition of cluster exists. Clusters can be of any arbitrary
shapes and sizes in a multidimensional pattern space. Each
clustering criterion imposes a certain structure on the data,
and if the data happen to conform to the requirements of a

particular criterion, the true clusters are
recovered. ’ ’

%Jain & Dubes, 1988
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