
Beyond model visualization for multidimensional data:

high-dimension and complex non numeric data

Nathalie Villa-Vialaneix and Anne Ruiz-Gazen

INRA, UR 0785 MIAT
BP 52627

31326 Castanet Tolosan cedex - FRANCE
e-mail: nathalie.villa@toulouse.inra.fr

Toulouse School of Economics
Manufacture des tabacs, 21 allée de Brienne

31000 Toulouse - FRANCE

e-mail: anne.ruiz-gazen@tse-fr.eu

1 Introduction

We greatly appreciate the opportunity to read and
discuss the paper “Visualizing statistical models:
removing the blindfold” [42]. The article manages
to close the gap between statistics and visualization
by combining advanced methods from both fields to
visualize statistical models and methods. The ar-
ticle provides a very nice overview of visualization
tools for statistical models, which can be used to 1)
understand the model itself (i.e., what the model
says about the data), 2) assess its relevance (i.e.,
if the model is accurate to describe the data, if the
model has been well trained...) and 3) evaluate the
variability of a family of models, use this informa-
tion to select a model within a family, evaluate its
robustness and combine several models in a rele-
vant manner.

We believe that this point of view is innovative
and rarely addressed, statisticians tending to rely
more on graphics to visualize the data themselves
and on numeric criteria and statistics to evaluate
models. However, as demonstrated in the article,
applied statisticians would take great advantage
of using interactive visualization methods for fit-
ting and interpreting an adequate model. More-
over, such tools are now easily accessible, using
for instance the R packages rggobi, classifly, clus-
terfly and meifly that are described in the article.
Nowadays, data analysis is a highly developing field

which has applications in many disciplines such as
biology, genetics, economics, marketing or meteo-
rology. Data are also increasingly challenging: high
dimensional data, “big data”, complex and possi-
bly non numeric data. In this context, visualization
must be part of the standard background available
for any statistician or data scientist. Combining
specialized statistical methods with visualization,
as described in the article, should improve the abil-
ity to understand data and design good models.

Integrating visualization and statistics/data
mining methods is an emerging trend which is de-
veloping very fast. More and more R packages
now include a variety of graphics for exploring
the results of the analyses: FactoMineR [20, 26]
(multivariate exploratory analysis) or the emerging
package factoextra [22] which provides ggplot2 [41]
graphics and syntax for FactoMineR, mixOmics
[13, 27] (exploratory analysis of ’omics data), SOM-
brero [39, 29] (self-organizing maps for multivariate
data, contingency tables and dissimilarity data),
VIM [36] (visualization of missing data), GeoXp
[2, 25] (interactive exploratory analysis of spatial
data, with linked brushing), among others. Most
of the developers have now understood the impor-
tance of making these tools usable by anyone and
have developed graphical interfaces, taking full ad-
vantages of the emerging interactive tools available
in R such as shiny [11] (see, for instance, the R
package Factoshiny [38] or the shiny interface for
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SOMbrero1).
Here, we want to discuss further two important

challenges for visualization of statistical methods
in modern data and problems: the first one is the
issue of dimension reduction (Section 2) and the
second one is the issue of non numeric data sets
(Section 3).

2 High dimension

When the data are numerical and lie in a high
dimensional space, the data structure is expected
to be contained in a low dimension subspace and
dimension reduction methods are particularly rel-
evant. Among the unsupervised dimension re-
duction methods, one can quote Exploratory Pro-
jection Pursuit (EPP) with Principal Component
Analysis (PCA) as a special case, the projection
index being the variance. And, more recently, the
Invariant Coordinate Selection (ICS) method pro-
posed by [37] and studied in [9, 21, 1]. The PCA
and ICS methods are based on a spectral decompo-
sition and lead to some orthogonal projection ma-
trices that define nested vector subspaces. Once
chosen the subspace dimension, it is possible to use
biplots in order to represent together the observa-
tions and the variables (see FactoMineR [20, 26]).
The EPP approach is different. It is based on some
projection index that measures the interest of one-
or two-dimensional orthogonal projections and on
an optimization algorithm that optimizes the pro-
jection index over all possible projections. The
question of the existence of an underlying model
for such exploratory data analysis is also of inter-
est. In [6, 5], PCA is derived as a least squares
estimation method under a model which is called a
“fixed effect model” and mainly assumes that the
expectations of the observations belong to a sub-
space. In [10], another model is introduced in the
context of EPP and ICS where the structure of the
data we are interested in (mainly clusters and out-
liers) lie also in a subspace. In the framework of the
above-mentioned models, the dimension of the sub-
space can be estimated and even in an optimal way
in the case of PCA [6]. Reducing the dimension of
course simplifies the task of the data scientist who
only has to explore a reduced subspace instead of
the full one. However in such a context, the data

1http://shiny.nathalievilla.org

are vizualized in the model space and not the con-
trary.

Another difference between EPP, PCA and ICS
concerns the standardization of the data. While
ICS is affine invariant in the sense that the obtained
scatterplots do not depend on the affine transfor-
mation of the raw data, PCA is only orthogonally
invariant meaning that the scale of the variables
has an impact on the results. Concerning EPP, it
is well known that the results differ depending on
whether the data are made spherical or not and
it very often advisable to make the data spherical
[16].

As stated in the paper under discussion, for EPP,
the optimization algorithm may lead to some local
optima and the user may have to try several start-
ing points and a dynamic approach as the grand
tour (see the R package tourr, [43]) to gain more
insights in the data structure. Our experience with
such dynamic tools is that their use may be te-
dious especially when the number of observations
and the dimension are high and when there is no
prior information concerning the data. Another
possibility that follows the idea that “collections
are more informative than singletons” is to use first
a non-dynamic approach but with many starting
points that will lead to a collection of potentially
interesting projections. Then, one can either an-
alyze the different selected projections or average
the corresponding orthogonal projection matrices
as proposed in [28] and implemented in the R pack-
age LDRTools. Figure 1 gives an application of
the method on the wine data set which contains
178 observations and 13 variables. One hundred
one-dimensional orthogonal projections are first ob-
tained by minimizing the kurtosis projection index
which is an index adapted to cluster detection [31].
The projections are then averaged in a orthogonal
projection with a rank equal to three which gives
some insight in the data set cluster structure. Note
that the choice of the rank of the projection ma-
trix gives the dimension of the projection subspace
and is integrated in the averaging process which is
based on a distance minimization criteria between
orthogonal projection matrices. Different distances
between projection matrices can be defined based
on the Frobenius norm and this choice has some
impact on the obtained results exactly as in the
following section when the results depend on the
choice of the dissimilarity.
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Figure 1: Average orthogonal projection of the wine data set observations obtained from 100 starting
points using the kurtosis projection index
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An alternative is to average projections obtained
using different projection indices and several op-
timization algorithms as detailed in [4]. In a re-
cent Java implementation of one-dimensional Ex-
ploratory Projection Pursuit called EPPLab2, a
plot for monitoring the convergence of the proposed
(biologically inspired) optimization algorithms is
included, together with a visualization of the or-
dered values of the projection index and cosines of
the angles between projection vectors in order to
check if they correspond to the same or to different
projections. In this case, looking at the way the
algorithm converges is helpful for tuning some of
the algorithms parameters when such parameters
exist. This Java program has been interfaced re-
cently with R in the REPPlab package [15] and is
described in [4].

Also, when examining plots obtained through
EPP or ICS, the question of whether the obtained
views reveal a significant structure or are only spu-
rious is of course crucial. In [34], approximate
p-values are derived by looking at the tail prob-
ability of the maximum of a Gaussian random field
associated with a particular projection pursuit in-
dex. In [9], the choice of the dimension is based
also on some kind of p-values. In [8], possible pro-
tocols are described in order to get inferential va-
lidity from visual discovery using exploratory data
analysis. This point however deserves more atten-
tion.

3 Visualizing models for non
numeric data

One of the major challenges of the modern data
analysis is that data appear less and less in the
form of standard multivariate vectors. Examples
of such complex data include graphs (or networks,
i.e., graphs with additional information describing
the nodes and/or edges), functional data, categor-
ical time series, strings, . . . To deal with such data
in statistical models (clustering, classification, re-
gression), a common approach is to rely on a nu-
meric description of the pairwise relations between
observations (e.g., between two nodes in a graph,
between two textual documents,. . . ). These de-
scriptors can be kernels [19], that are positive defi-

2https://github.com/fischuu/EPP-lab

nite similarities which allow to embed the data into
a Hilbert space [3] or any other (dis)similarities.
Many statistical methods have been adapted to
deal with such data (SVM [7] or LS-SVM for re-
gression [35], kernel k-means [14], kernel PCA [32],
relational topographic methods [18]. . . ).

In these cases, the model cannot be described
anymore by the three levels of specificity given in
Section 2.1 of [42]: an additional level exists even
before the model family, which corresponds to the
choice of the (dis)similarity and is included in the
model as a way to capture some features in the
raw complex data. The choice of the (dis)similarity
has to be designed with care, as a relevant way to
summarize the data. Using the same principles as
the ones described in [42] can help evaluating the
relevance of a set of dissimilarities, from the data
point of view and from the model point of view.
An example of such an approach is provided in the
sequel with a graph. However, we barely scratch
the surface of this issue: such data could be the
object of very specific treatments and innovative
visualization techniques.

3.1 Visualization for dissimilarity
evaluation

Graphs are used to represent relational data, i.e.,
data in which entities (nodes of the graph) are
described by their relations (edges of the graph).
Common problems associated with these data are
visualization and node clustering. As they are no
“natural” Euclidean embedding of a graph, most
methods that aim at displaying a graph are intrin-
sically very different from multivariate data visu-
alization methods. A very popular family of algo-
rithms is based on a reference to physics and mimics
electric and spring forces to position the nodes in
a 2D space: these are called Force Directed Place-
ment (FDP) [17].

However, using more sophisticated statistical
methods and models for graphs might be useful for
gaining knowledge or using the graph for predic-
tions. In this case, kernel and (dis)similarity meth-
ods have been proven useful (see [33] for examples
in the field of biology) but the choice of the ker-
nel/(dis)similarity is left to the user and can be
critical to obtain meaningful results. Standard ex-
amples of common kernel/(dis)similarities include:
1) the Euclidean distance between the K eigenvec-
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Figure 2: Comparison of different dissimilarities for the data set “Les Misérables” from an ms-in-d
point of view (first row) and a d-in-ms point of view (second row). In the first approach, the nodes
are positioned with a FDP algorithm. In the latter, they are positioned using the embedding in the
(pseudo)-Euclidean subspace induced by the (dis)similarity thanks to Multi Dimensional Scaling (MDS).
The colors of the nodes are obtained according to their distance to the main character of the novel, “Jean
Valjean”.
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tors associated with the K smallest eigenvalues of
the graph Laplacian: this dissimilarity is the one
used when performing spectral clustering [40]; 2)
the heat kernel [24]; 3) the shortest path length be-
tween two nodes along the edges of the graph. Fol-
lowing the ideas of [42], Figure 2 shows an example
of what can be d-in-ms plots and ms-in-d plots for
(dis)similarity diagnostic in this case with a simple
graph based on the novel “Les Misérables” from the
French author Victor Hugo3. The first row of this
figure uses a FDP approach to set the positions of
the nodes: this can be seen as a visualization in the
data space. At this stage, the model corresponds to
the way the data are summarized through a given
(dis)similarity: the colors of the nodes thus corre-
spond to the (dis)similarity measure from one of
the nodes’ point of view (here, “Jean Valjean”, the
main character of the novel). The second row of
the figure uses a MDS (but a projection based on
a grand tour technique could have been used for
a more interactive or original visualization) to dis-
play the nodes in a 2D space, similarly to what they
are in the embedding (pseudo)-Euclidean space in-
duced by the (dis)similarity. These plots can thus
be seen as d-in-ms plots: the graph represented in
the model space, which is the space induced by
the (dis)similarity. The information provided by
the color is the same as in the latter visualization.
While the first row is easier to read, it is very lim-
ited for understanding the dissimilarity. It is re-
stricted to one node’s point of view and 77 such
graphics must be used to have a complete visual-
ization of all the (dis)similarity measures between
nodes. The second row provides additional infor-
mation: the heat kernel is the (dis)similarity that
produces the most compact view while the shortest
path length tends to give a more uniform view. The
distance between the 8 eigenvectors of the Lapla-
cian associated with the smallest eigenvalues is be-
tween the other two. From a clustering perspective,
it is thus expected that the same model behaves
very differently with these various summaries of the
graph. For instance, Figure 3 shows that a simple
hierarchical clustering of the nodes provides highly
unbalanced clusters with the heat kernel and much
more uniform cluster sizes with the shortest path
length.

3This graph has been first used in [23] and is available in
the R package SOMbrero.

3.2 Visualization for node clustering
diagnostic

Using the shortest path length as a descriptor of the
graph “les Misérables”, The R package SOMbrero
allows us to perform the relational version of the
self-organizing map (SOM) algorithm [29]. This
version extends the standard SOM method to data
described by a dissimilarity matrix. The results
commented in this section are the ones described
in the package’s vignette. The SOM parameters
are set to obtain a net having dimensions 5×5 and
the algorithm is trained with 385 iterations (default
values in SOMbrero which corresponds to 5 times
the number of observations).

Again, the recommendations made in [42] can be
applied to this case: in relational SOM, prototypes4

are expressed as symbolic convex combinations of
the nodes of the graph

prototype ∼
∑
i

βi × nodei

(with βi ≥ 0 and
∑

i βi = 1). A dissimilarity in-
duced by the dissimilarity chosen to summarize the
graph can be computed for all pairs of prototypes,
as explained in [29]. Using this trick, Figure 4
shows a typical d-in-ms view which is suggested in
[12] and is implemented in the package: this view
displays the neurons of the net as octagons. The di-
mensions of each side of the octogon is proportional
to the dissimilarity between the prototype and its
neighboring prototype in this direction. The color
level indicates the number of nodes of the graph
classified inside this neuron. The center of the net
is composed of empty neurons (white neurons) and
the top left hand side of the map (neurons 4 and
5) is rather separated from the rest.

Using the coordinates of the nodes obtained by
FDP, a plot similar to the m-in-ds plot of Figure 17
in [42] can be obtained: each prototype being dis-
played at coordinates

∑
i βi× (xi, yi) where (xi, yi)

are the coordinates of nodei in FDP. In Figure 5,
this technique is used to visualize the evolution of

4called “nodes” in the article [42]; we chose not to use this
name in our article in order to differentiate between the rep-
resenter of the clusters and the nodes of the original graph.
The entities that compose the net are also called “nodes”
in [42], we will call then “neurons” in order to differenti-
ate them from their prototypes that have values in the data
space.
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Figure 3: Comparison of the result of hierarchical clustering with various dissimilarities for the data set
“Les Misérables”.
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Figure 4: A visualization of the model space: each neuron is represented by an octogon whose dimensions
are proportional to its distances with its neighboring prototypes.

the prototypes during the training of the net5. This
figure shows that, starting from prototypes that
have a rather central “position” in the graph, the
SOM slowly organizes and stabilizes. The last it-
eration shows that neurons 4 and 5 that were dis-
cussed earlier correspond to nodes located at the
bottom left hand side of the FDP representation.
Actually, these nodes are those related to father
Myriel, a bishop who is helping Jean Valjean at
the beginning of the novel.

Further discussions about graph visualization us-
ing SOM are provided in [30].

4 Conclusion

In conclusion, the article [42] is a very interesting
overview on statistical models visualization. We
believe that this field, which integrates statistics
and visualization, will be an increasing part of the
standard statisticians’ toolkit, and will facilitate
the exploration and selection of models suited to
the data and problems at hand. Modern data are a
source of important challenges for this topic, that
will have to handle very high dimensional data,

5SOMbrero contains an option that allows the user to
save a given number of intermediate states (prototypes and
clustering) during the training.

complex (and possibly non vectorial) data and big
data. We have not addressed this latter issue in our
discussion but it is clearly an important and emerg-
ing topic (see for instance, the R package bigvis
[44]).
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