La famille *down

Nathalie Vialaneix, INRA/MIAT

RUG Toulouse, November 18th 2019

What is Markdown? (*.md files)

According to Wikipedia,

Markdown is a lightweight markup language with plain text formatting syntax. Its design allows it to be converted to many output formats.

Why Markdown?

- formatting text and documents is easy
- probably the most used lightweight markup language for numeric documents (especially technical documentations)

But: is sometimes a bit limited if you want to have custom outputs

What is **R**Markdown? (*.Rmd files)

- developed by RStudio (and especially by Yihui Xie)
- combines Markdown documents with **R** scripts (or python, C++, bash, ...) to produce dynamic (and even interactive) documents

What is **R**Markdown? (*.Rmd files)

- developed by RStudio (and especially by Yihui Xie)
- combines Markdown documents with **R** scripts (or python, C++, bash, ...) to produce dynamic (and even interactive) documents
- also available as **R** notebooks (similar to Jupyter notebooks)

Basic RMarkdown documents

What do you need? (certified exact on linux)

- R
- RStudio (not mandatory but highly recommended) and if you don't know how to install it on linux, please, ask your sysadmin
- packages: at least knitr but other packages (rmarkdown, markdown, ...)
- pandoc to obtain different output types from * . md files: Rmd \rightarrow md \rightarrow (with pandoc) HTML
- it is best to have LAT_EX installed to render maths or obtain PDF documents

Basic demo...

Yaml headers

title: "A first example (RMarkdown)"
author: "Nathalie Vialaneix"
date: "11/8/2019"
output: html_document

- - -

Yaml headers

title: "A first example (RMarkdown)"
author: "Nathalie Vialaneix"
date: "11/8/2019"
output:
 html_document:
 toc: true
 toc_float:
 collapsed: true
 number_sections: true

1 Main section	
1.1 R Markdown	
1.2 Including Plots	
2 Section section	

1 Main section

1.1 R Markdown

This is an R Markdown document. Markdown is a simple for documents. For more details on using R Markdown see htt

When you click the **Knit** button a document will be generat embedded R code chunks within the document. You can er

summary(cars)	

speed dist

2 Section section

Yaml headers

title: "A first example (RMarkdown)"
author: "Nathalie Vialaneix"
date: "11/8/2019"
output:
 pdf_document:
 toc: true
 html_document:
 toc: true
 toc_float:
 collapsed: true
 number_sections: true

Text formatting

Syntax

Plain text
End a line with two spaces to start a new paragraph.
<pre>*italics* and _italics_</pre>
bold andbold
superscript^2^
~~strikethrough~~
[link](www.rstudio.com)
Header 1
Header 2
Header 3
Header 4
Header 5
Header 6
endash:
emdash:
ellipsis:
inline equation: \$A = \pi*r^{2}\$
<pre>image: </pre>
horizontal rule (or slide break):

Becomes

Plain text End a line with two spaces to start a new paragraph. *italics* and *italics* **bold** and **bold** superscript² strikethrough link Header 1 Header 2

Header 3 Header 4 Header 5 Header 6 endash: emdash: ellipsis: ... inline equation: $A = \pi * r^2$ image:

horizontal rule (or slide break):

Text formatting

> block quote

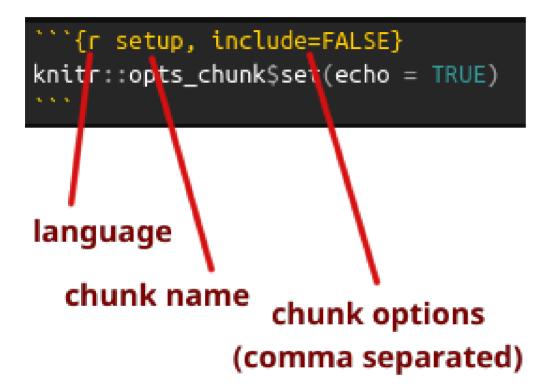
- * unordered list
- * item 2
 - + sub-item 1
 - + sub-item 2

1. ordered list

- 2. item 2
 - + sub-item 1
 - + sub-item 2

Table Header	Second Header
Table Cell	Cell 2
Cell 3	Cell 4

block quote

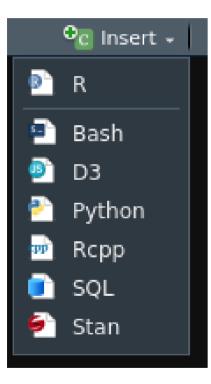

- unordered list
- item 2
 - sub-item 1
 - sub-item 2

1. ordered list

- 2. item 2
 - sub-item 1
 - sub-item 2

Table Header	Second Header
Table Cell	Cell 2
Cell 3	Cell 4

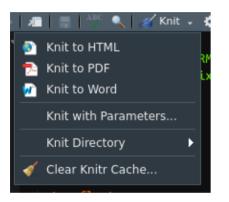
Code chunk and options



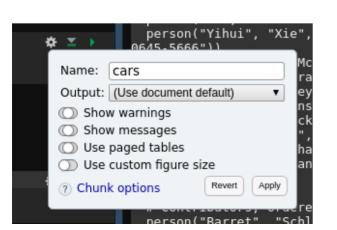
Inline code can be included with

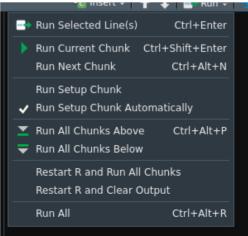
Code chunk and options

Types of chunks:


Code chunk and options

A few useful options:


- eval=TRUE/FALSE: run (or not) the code in the chunk
- include=TRUE/FALSE: include (or not) the chunk in the final document
- echo=TRUE/FALSE: include (or not) the output of the code in the final document
- results='markup'/'hide'/'asis'/'hold': display the output of the code normally/not/as it is (useful when combined with xtable for HTML outputs of tables for instance)/all in a row after the code chunk is displayed (and not one by one)
- error/message/warning=TRUE/FALSE: display (or not) the different types of messages obtained from the code
- **cache=TRUE/FALSE**: cache the result of the chunk
- fig.width/height/align/cap/...: different options on rendering of figures


Run code and output types

Run the whole document:

Run interactively:

Run code and output types

Run the whole document externally:

Useful to run a report with computationally intensive code on a server! See: <u>http://www.nathalievialaneix.eu/doc/pdf/tutoR_cluster.pdf</u>

Run code and output types

- HTML: often light and can include interactive graphics (with ggplotly for instance)
 - HTML and LTEX equations can be included directly in the document
 - **But**: problems rendering equations without internet connexion, you need to copy several folders in addition to the file to make it work
 - problems partially solved with the option: self_contained: true (in HTML headers)
- PDF: self-contained but often heavier, needs LAT_EX installed
 - usually longer to knit (pandoc produces a TeX document and then LT_EX is run)
 - can account for $\angle T_E X$ options in the headers (including bibliography)
 - can use the power of $L\!\!T_E\!X$ to obtain multiple version documents (student and teacher versions for instance)

(and, of course, **forget Word**!)

Advanced options for RMarkdown documents

Appearance and style in HTML documents

- theme (in header) specifies the <u>Bootswatch</u> theme to use
- highlight (in header) specifies the highlighting style to use (supports tango, pygments, kate, monochrome, espresso, zenburn, haddock, breezedark and textmate)

Or: you can use your own CSS with **CSS** (in header)

$LAT_E X$ options in PDF documents

Variable	Description
lang	Document language code
fontsize	Font size (e.g., 10pt , 11pt , or 12pt)
documentclass	LaTeX document class (e.g., article)
classoption	Options for documentclass (e.g., oneside)
geometry	Options for geometry class (e.g., margin=1in)
mainfont, sansfont, monofont, mathfont	Document fonts (works only with xelatex and lualatex)
linkcolor, urlcolor, citecolor	Color for internal, external, and citation links

$LAT_E X$ options in PDF documents

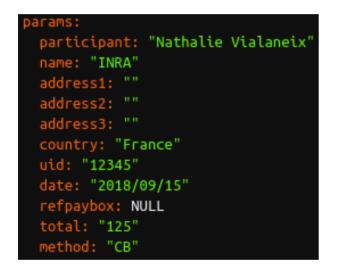
Bibliography is managed using:

- the citation engine (default is pandoc-citeproc):
 - o citation_package: natbib (header, in pdf_document)
 - citation_package: biblatex (header, in pdf_document)
- the bibtex file: bibliograph: mybib.bib (header, in pdf_document)

$LAT_E X$ options in PDF documents

More custom options in headers:

header-includes:
 \usepackage[frenchb]{babel}
 \graphicspath{{img/}}


LAT_EX multiple version document

% set this variable to 1/0 to have the teacher/student version
\def\version{1}

\if \version1 \\
... in teacher version only
\fi

A **very** cool stuff: parameters!

How were useR! invoices generated (and sent)?

and then, used in the Rmd file through params\$participant, params\$name, ...

A **very** cool stuff: parameters!

... or passed externally using render:

```
## loop over users #######
render("invoice-base.Rmd",
       params = list(participant = paste(users$FIRSTNAME[cur], users$
                     name = users$"Billing.name"[cur],
                     address1 = users$"Billing.address..street."[cur]
                     address2 = users$"Billing.address..other."[cur],
                     address3 = users$"Billing.address..state..town.a
                     country = users$"Billing.address..country."[cur]
                     uid = users$UID[cur],
                     date = gsub("-", "/", as.character(as.Date(saved))
                     total = users$Amount[cur],
                     method = users$Payment.type[cur],
                     refpaybox = users$transaction[cur]
       ),
       output_file = paste0("invoices/", file_names[cur]))
# send email
send.mail(from = "contact@user2019.fr",
          to = ...,
          attach.files = paste0("invoices/", file_names[cur]))
```

A **very** cool stuff: parameters!

- used to produce automatic report on standard analyses (*e.g.*, differential analysis of RNAseq data with only two conditions)
- used to run standard analyses on multiple datasets at once
- parameters can be set interactively using the knit buttom
- constrains can be declared for parameters

year:	
label:	"Year"
value:	2017
input:	slider
min: 20	910
max: 20	918
step: :	1
sep: "	п

Want to know more?

- R Markdown <u>cheatsheet</u>
- **R** Markdown <u>reference</u>
- **R** Markdown <u>book</u>

Other types of documents

Slides

Using the same approach, you can make:

• **R** presentation (included in **R** studio) but with rather limited features

(my <u>old class on **R**</u> was made using it)

 xarigan slides (HTML), also developed by Yihui Xie (see Chapter 7 of the R Markdown book): easy to use and includes many options but if you want to obtain a custom result, you better be an HTML/CSS ninja, can be exported in PDF with pagedown::chrome_print (but I do not recommend it)

this presentation was made with xaringan using the rladies css

• binb (binb is not beamer) provides functionality to use themes for beamer directly in RMarkdown: if you want to obtain a custom result, you better be a $I\!AT_E X$ ninja, output PDF, long to compile (as beamer is)

(this <u>seminar</u> has been made using binb)

drposter (example is courtesy of Pierre Neuvial)

Adjacency-constrained hierarchical clustering of a band similarity matrix with application to genomics Christophe Ambroise ¹ , Alia Dehman ² , Pierre Neuvial ³ , Guillem Rigaill ⁴ and Nathalie Vialaneix ⁵				
¹ LaMME, Evry ²		ématiques de Toulouse/CNRS · ⁴ IPS2, CN	IRS/INRA ⁵ INRA MIAT	
Genome-Wide Association itudies (GWAS) loci: SNP similarity: linkage disequilibrium regions: LD/haplotype blocks	Chromosome contact maps (Hi-C) • loci: binned genome positions • similarity: contact intensity • regions: TAD; A/B compartments	Min heap A partially ordered binary tree • nodes = candidate merges • ordering given by the linkage δ		
		\rightarrow next candidate fusion is the root of the heap Complexity • $O(ph)$ in space • $O(p(h + log(p))$ in time		

Documentation for packages

pkgdown: Generate cool package documentation from your package

Example from <u>adjclust</u>

bookdown: generate printer ready books and ebooks from **R** Markdown

I never used it so no feedback...

blogdown: generate website from RMarkdown pages using <u>hugo</u> (python static website generator).

The <u>missing data reference website</u> is generated through blogdown and thanks to its hugo support is automatically published on netlify.

Next to come...?

coffeedown...?