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Outline

0 Normalization

e Differential expression analysis

@ Hypothesis testing and correction for multiple tests
@ Differential expression analysis for RNAseq data
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A typical transcriptomic experiment
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Some features of RNAseq data
What must be taken into account?

@ discrete, non-negative data (total number of aligned reads)
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Some features of RNAseq data

What must be taken into account?
@ discrete, non-negative data (total number of aligned reads)

@ skewed data
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Some features of RNAseq data

What must be taken into account?
@ discrete, non-negative data (total number of aligned reads)
@ skewed data
@ overdispersion (variance > mean)

Variance versus mean in counts
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Steps in RNAseq data analysis

Exploratory analysis
(identify outliers, filter genes, clean
data...)
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Enrichment analysis [€—>{ (clustering, relations
with other 'omics...)
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Part |: Normalization

Exploratory analysis
(identify outliers, filter genes, clean
data...)
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Purpose of normalization

@ identify and correct technical biases (due to sequencing process) to
make counts comparable

@ types of normalization: within sample normalization and between
sample normalization
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Source of variation in RNA-seq experiments
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differences due to e.g., environmental or genetic
/ \ factors)
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ﬂﬂﬂm mﬁm \ @ at the middle layer: technical variations (library effect)
/ \ © at the bottom layer: technical variations (lane and cell

flow effects)
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Source of variation in RNA-seq experiments
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\F \F \P @ at the top layer: biological variations (i.e., individual

differences due to e.g., environmental or genetic
/ \ factors)
vy
ﬂﬂﬂm m \ @ at the middle layer: technical variations (library effect)
/ \ © at the bottom layer: technical variations (lane and cell

flow effects)

lane effect < cell flow effect < library effect « biological effect

Biostatistics - RNAseq 8/37



Within sample normalization
Example: (read counts)
| sample 1 | sample 2 | sample 3

gene A 752 615 1203
gene B 1507 1225 2455

counts for gene B are twice larger than counts for gene A because:
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Within sample normalization
Example: (read counts)

| sample 1 | sample 2 | sample 3

gene A 752 615 1203
gene B 1507 1225 2455

counts for gene B are twice larger than counts for gene A because:

@ gene B is expressed with a number of transcripts twice larger than
gene A

i

gene B
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Within sample normalization

Example: (read counts)
| sample 1 | sample 2 | sample 3

752 615 1203
1507 1225 2455

gene A
gene B

counts for gene B are twice larger than counts for gene A because:

@ both genes are expressed with the same number of transcripts but
gene B is twice longer than gene A
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Within sample normalization

@ Purpose of within sample comparison: enabling comparisons of
genes from a same sample

@ Sources of variability: gene length, sequence composition (GC
content)

These differences need not to be corrected for a differential analysis and
are not really relevant for data interpretation.
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Between sample normalization
Example: (read counts)
| sample 1 | sample 2 | sample 3

gene A 752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:
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Between sample normalization
Example: (read counts)

| sample 1 | sample 2 | sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:

@ gene A is more expressed in sample 3 than in sample 2

i

gene A in sample 2 gene A in sample 3
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Between sample normalization
Example: (read counts)

| sample 1 | sample 2 | sample 3
gene A

752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:

@ gene A is expressed similarly in the two samples but sequencing
depth is larger in sample 3 than in sample 2 (i.e., differences in library
sizes)

i

gene A in sample 2 gene A in sample 3
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Between sample normalization

@ Purpose of between sample comparison: enabling comparisons of a
gene in different samples

@ Sources of variability: library size, ...

These differences must be corrected for a differential analysis and for data
interpretation.
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Principles for sequencing depth normalization
Basics
@ choose an appropriate baseline for each sample

@ for a given gene, compare counts relative to the baseline rather than
raw counts
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Principles for sequencing depth normalization
Basics
@ choose an appropriate baseline for each sample

@ for a given gene, compare counts relative to the baseline rather than
raw counts

In practice: Raw counts correspond to different sequencing depths
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Principles for sequencing depth normalization
Basics
@ choose an appropriate baseline for each sample

@ for a given gene, compare counts relative to the baseline rather than
raw counts

In practice: A correction multiplicative factor is calculated for every sample
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Principles for sequencing depth normalization
Basics
@ choose an appropriate baseline for each sample

@ for a given gene, compare counts relative to the baseline rather than
raw counts

In practice: Every counts is multiplied by the correction factor
corresponding to its sample
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Principles for sequencing depth normalization
Basics
@ choose an appropriate baseline for each sample

@ for a given gene, compare counts relative to the baseline rather than
raw counts

Consequences: Library sizes for normalized counts are roughly equal.
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Principles for sequencing depth normalization

Definition

If Ky is the raw count for gene g in sample j then, the normalized counts is
defined as:
Ro= 2
5i

in which s; = Cj‘1 is the scaling factor for sample j.
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Principles for sequencing depth normalization

Definition
If Ky is the raw count for gene g in sample j then, the normalized counts is
defined as:
Ry — o
A

in which s; = Cj‘1 is the scaling factor for sample j.

Three types of methods:
@ distribution adjustment
@ method taking length into account
@ the “effective library size” concept
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Distribution adjustment
@ Total read count adjustment [Mortazavi et al., 2008]
b;
Sj = N
1NZ/:1 Dy

in which N is the number of samples and D; = 3, Kg;.

@weouns  normal lized counts.

edgeR:

1)

‘Samples
sample 1

B oz cpm(...,
normalized.lib.sizes=TRUE)

10+

logs(count +

250 500 750 10000 250 SO0 750 1000

rank(mean) gene expression
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Distribution adjustment
@ Total read count adjustment [Mortazavi et al., 2008]
@ (Upper) Quartile normalization [Bullard et al., 2010]

(p)
Qf

el

Sj =

in which Qj(p) is a given quantile (generally 3rd quartile) of the count
distribution in sample j.

aw courts. normalized counts raw counts normalized couris.

sssssss
SSSSSSS

edgeR:

calcNormFactors (..., method = "upperquartile",
p = 0.75)
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Method using gene lengths (intra & inter sample
normalization)

RPKM: Reads Per Kilobase per Million mapped Reads

Assumptions: read counts are proportional to expression level, transcript
length and sequencing depth

o Dt
777108 x 108
in which Ly is gene length (bp).
edgeR:
rpkm(..., gene.length = ...)

Unbiaised estimation of number of reads but affect variability
[Oshlack and Wakefield, 2009].
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Relative Log Expression (RLE)

[Anders and Huber, 2010], edgeR - DESeq - DESeq2
Method:

@ compute a pseudo-reference sample: geometric mean across

samples
N
Ry = l_[ Ko
j=1

(geometric mean is less sensitive to extreme values than standard
mean)

1/N

samples
- sample 1
- Sample 2

log,(count + 1)

0 250 500 750 1000

rank(mean) gene expression

Nathalie Villa-Vialaneix (INRA, MIAT) Biostatistics - RNAseq 15/37



Relative Log Expression (RLE)
[Anders and Huber, 2010], edgeR - DESeq - DESeq2
Method:

@ compute a pseudo-reference sample

© center samples compared to the reference

N 1/N

~ Kg] .

Ky=g- with Ry= [ [Ka
g j=1

©

Samples
- sample 1
- sample 2

count / geo. mean
~

0 250 500 750 1000

rank(mean) gene expression
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Relative Log Expression (RLE)
[Anders and Huber, 2010], edgeR - DESeq - DESeq2
Method:
@ compute a pseudo-reference sample
© center samples compared to the reference
© calculate normalization factor: median of centered counts over the
genes

Sj
exp (4 Z, log(8)))

§ = megian {Kg,-} factors multiply to 1:  s; =

with
9= R
: s 9
8 B and
. i N 1/N
b d w0 o Rg = l_[ Kai
rank(mean) gene expression j: 1
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Relative Log Expression (RLE)
[Anders and Huber, 2010], edgeR - DESeq - DESeq2
Method:

@ compute a pseudo-reference sample

© center samples compared to the reference

@ calculate normalization factor: median of centered counts over the
genes

o E ## with edgeR
calcNormFactors (...,
Samples method="RLE")

- sample 1

log,(count + 1)

- sample 2

## with DESeq
estimateSizeFactors(...)

0 250 500 750 1000

rank(mean) gene expression
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Trimmed Mean of M-values (TMM)

[Robinson and Oshlack, 2010], edgeR
Assumptions behind the method

@ the total read count strongly depends on a few highly expressed
genes

@ most genes are not differentially expressed

Nathalie Villa-Vialaneix (INRA, MIAT) Biostatistics - RNAseq 17/37



Trimmed Mean of M-values (TMM)

[Robinson and Oshlack, 2010], edgeR
Assumptions behind the method

@ the total read count strongly depends on a few highly expressed
genes

@ most genes are not differentially expressed

= remove extreme data for fold-changed (M) and average intensity (A)
Mq(j, 1) = |092( D, ) |092( D, ) Agljsr) = > [IOQQ (Fj + logy D,

select as a reference sample, the
sample r with the upper quartile
closest to the average upper
quartile

M- vs A-values

M(.r)

.....

Al
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Trimmed Mean of M-values (TMM)

[Robinson and Oshlack, 2010], edgeR
Assumptions behind the method

@ the total read count strongly depends on a few highly expressed
genes

@ most genes are not differentially expressed

= remove extreme data for fold-changed (M) and average intensity (A)

i) () s on()

M(.r)

Trim 30% on M-values

* 30% of Mg

AGD
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Trimmed Mean of M-values (TMM)

[Robinson and Oshlack, 2010], edgeR
Assumptions behind the method

@ the total read count strongly depends on a few highly expressed
genes

@ most genes are not differentially expressed

= remove extreme data for fold-changed (M) and average intensity (A)

i) () s on()

M(.r)

Trim 5% on A-values

 30% of Mg
 s¥ofAg

AGD
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Trimmed Mean of M-values (TMM)

[Robinson and Oshlack, 2010], edgeR
Assumptions behind the method

@ the total read count strongly depends on a few highly expressed

genes

@ most genes are not differentially expressed

AGr)

Nathalie Villa-Vialaneix (INRA, MIAT)

On remaining data, calculate the
weighted mean of M-values:
2 dwg(j, r)Mg(j. r)
. g:not trimme
TMM(j, r) = .
U.1) X wo(j, r)
g:not trimmed

: , DKy , DK
with wy(j, r) = | %2 + 5> g’).
th wg(j, r) (D,ng T DRy
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Trimmed Mean of M-values (TMM)

[Robinson and Oshlack, 2010], edgeR
Assumptions behind the method

@ the total read count strongly depends on a few highly expressed
genes

@ most genes are not differentially expressed

Correction factors:
§j
exp(4 =, log(3))

g = 2™MUN  factors multiply to 1: s =

calcNormFactors (..., method="TMM")
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Comparison of the different approaches
[Dillies et al., 2013], (6 simulated datasets)

Purpose of the comparison:
@ finding the “best” method for all cases is not a realistic purpose

@ find an approach which is robust enough to provide relevant results in
all cases

@ Method: comparison based on several criteria to select a method
which is valid for multiple objectives
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Comparison of the different approaches
[Dillies et al., 2013], (6 simulated datasets)

Effect on count distribution:

RPKM and TC are very similar to raw data.
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Comparison of the different approaches
[Dillies et al., 2013], (6 simulated datasets)

Effect on differential analysis (DESeq v. 1.6):

Equivalent library sizes / Presence of majority genes
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Comparison of the different approaches
[Dillies et al., 2013], (6 simulated datasets)

Conclusion: Differences appear based on data characteristics

Method Distribution Intra-Variance Housekeeping Clustering False-positive rate
TC E e + - -

uQ ++ ++ + ++ -

Med ++ ++ - ++ -

DESeq ++ ++ ++ ++ ++

TMM ++ ++ ++ ++ ++

FQ ++ - + ++ -

RPKM = + + = =

TMM and DESeq (RLE) are performant in a differential analysis context.
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Practical session

@ import and understand data;
@ run different types of normalization;

@ compare the results...

Boxplots of normalized pseudo counts

for all samples by normalization methods

Raw counts )ESeq (RLE TC

RPKM

T™MM

uQ

.*:%

log, (normalized count + 1)

oot 3
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Part Il: Differential expression analysis

Exploratory analysis
(identify outliers, filter genes, clean
data...)

A

Y

[ Normalization ]

Network analysis
(co-expression,
regularory)

[ Differential analysis

Exploratory analysis

Enrichment analysis [¢—>{ (clustering, relations
with other 'omics...)
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Different steps in hypothesis testing

@ formulate an hypothesis Hp:
Ho: the average count for gene g in the control samples is the
same that the average count in the treated samples
which is tested against an alternative Hy: the average count for gene
g in the control samples is different from the average count in the
treated samples

25.0 - @
® [ J
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» i
< o [ J
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o condition
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3 ©® treated
2 [ ]
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Different steps in hypothesis testing

@ formulate an hypothesis Hp:
Ho: the average count for gene g in the control samples is the
same that the average count in the treated samples
@ from observations, calculate a test statistics (e.g., the mean in the two
samples)

25.0 - .

N

N

o
|

condition
@ control
© treated

N
3
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i
@
N

observed gene counts
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o
|

' '
control treated
condition
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Different steps in hypothesis testing

@ formulate an hypothesis Hp:
Ho: the average count for gene g in the control samples is the
same that the average count in the treated samples
@ from observations, calculate a test statistics (e.g., the mean in the two
samples)
@ find the theoretical distribution of the test statistics under Hg

theoretical distribution under HO

ics

probability to observe a larger test statist

B B
test statistics
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Different steps in hypothesis testing

@ formulate an hypothesis Hp:
Ho: the average count for gene g in the control samples is the
same that the average count in the treated samples

@ from observations, calculate a test statistics (e.g., the mean in the two
samples)

@ find the theoretical distribution of the test statistics under Hg

© deduce the probability that the observations occur under Hy: this is
called the p-value

theoretical distribution under HO

jer test statistics

observed statistics:
probabiliy o observe
value that large:

probabilty to observe a largy
/ w
:
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Different steps in hypothesis testing

@ formulate an hypothesis Hp:
Ho: the average count for gene g in the control samples is the
same that the average count in the treated samples

@ from observations, calculate a test statistics (e.g., the mean in the two
samples)

@ find the theoretical distribution of the test statistics under Hg

© deduce the probability that the observations occur under Hy: this is
called the p-value

@ conclude: if the p-value is low (usually below @ = 5% as a
convention), Hg is unlikely: we say that “Hy is rejected”.
We have that: @ = Py, (Ho is rejected).
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Summary of the possible decisions
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Types of errors in tests

Reality

Hg is true

Ho is false

Do not reject Hy

Correct decision

® (True Negative)

Type Il error

® (False Negative)

Decision

Reject Hy

Type | error

® (False Positive)

Correct decision

® (True Positive)

P(Type | error) = « (risk)

P(Type Il error) = 1 — 8 (3: power)
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Why performing a large number of tests might be a

problem?
Framework: Suppose you are performing G tests at level a.

P(at least one FP if Hy is always true) = 1 — (1 — )¢

Ex: for @ = 5% and G = 20,
PP(at least one FP if Hy is always true) ~ 64%!!!
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Why performing a large number of tests might be a

problem?
Framework: Suppose you are performing G tests at level a.

P(at least one FP if Hy is always true) = 1 — (1 — )¢

Ex: for @ = 5% and G = 20,

P(at least one FP if Hy is always true) ~ 64%!!!

Probability to have at least one false positive versus the number of tests
performed when Hy is true for all G tests

1.00-

] /—-
0"
s

For more than 75 tests and if Hg is

g 050- always true, the probability to have at
B least one false positive is very close
0.25- _‘. tO 100%'

| | ' | |
0 25 50 75 100
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Notation for multiple tests
Number of decisions for G independent tests:

True null False null Total

hypotheses | hypotheses

Rejected u % R
Not rejected Go—-U G-V G-R
Total Go Gy G
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Notation for multiple tests
Number of decisions for G independent tests:

True null False null Total

hypotheses | hypotheses

Rejected u % R
Not rejected Go—-U G-V G-R
Total Go Gy G

Instead of the risk «, control:
o familywise error rate (FWER): FWER = P(U > 0) (i.e., probability to
have at least one false positive decision)
o false discovery rate (FDR): FDR = E(Q) with

{U/R if R >0
Q:

0 otherwise
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Adjusted p-values

Settings: p-values p1, ..., pg (e.g., corresponding to G tests on G
different genes)

Adjusted p-values
adjusted p-values are p1, ..., pg such that

Rejecting tests such that pg <o < P(U>0)<a or E(Q)<a
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Adjusted p-values

Settings: p-values p1, ..., pg (e.g., corresponding to G tests on G
different genes)

Adjusted p-values
adjusted p-values are p1, ..., pg such that

Rejecting tests such that pg <o < P(U>0)<a or E(Q)<a

Calculating p-values
@ order the p-values p(1) < p2) < ... < p(g)

Nathalie Villa-Vialaneix (INRA, MIAT) Biostatistics - RNAseq 27/37



Adjusted p-values

Settings: p-values p1, ..., pg (e.g., corresponding to G tests on G
different genes)

Adjusted p-values
adjusted p-values are p1, ..., pg such that

Rejecting tests such that pg <o < P(U>0)<a or E(Q)<a

Calculating p-values
@ order the p-values p(1) < p2) < ... < p(g)

Q calculate p(g) = agp(q)

» with Bonferroni method: a; = G (FWER)
» with Benjamini & Hochberg method: ag = G/g (FDR)
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Adjusted p-values

Settings: p-values p1, ..., pg (e.g., corresponding to G tests on G
different genes)

Adjusted p-values
adjusted p-values are p1, ..., pg such that

Rejecting tests suchthat py<a < P(U>0)<e or E(Q)<a

Calculating p-values
@ order the p-values p(1) < p2) < ... < p(g)

Q calculate p(g) = agp(q)

» with Bonferroni method: ag = G (FWER)
» with Benjamini & Hochberg method: ag = G/g (FDR)

© if adjusted p-values p(g) are larger than 1, correct p(g) < min{p(g), 1}
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Fisher’'s exact test for contingency tables

After normalization, one may build a contingency table like this one:

treated control Total
gene g NgA NgB Ny
othergenes Na-nga Ng—-ng N-ng
Total Na Ng N

Question: is the number of reads of gene g in the treated sample
significatively different than in the control sample?
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Fisher’s exact test for contingency tables

After normalization, one may build a contingency table like this one:

treated control Total
gene g NgA NgB Ny
othergenes Nj—nga Ng-ng N-ng
Total Na Ng N

Question: is the number of reads of gene g in the treated sample
significatively different than in the control sample?

Method

Direct calculation of the probability to obtain such a contingency table (or a
“more extreme” contingency table) with:

@ independency between the two columns of the contingency tables;
@ the same marginals (“Total”).
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Example of results obtained with the Fisher test

Genes declared significantly differentially expressed are in pink:

Main remark: more
conservative for genes with a
low expression

log, fold change

10
mean log, expression
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Example of results obtained with the Fisher test

Genes declared significantly differentially expressed are in pink:

Main remark: more
conservative for genes with a
low expression

log, fold change

10
mean log, expression

Limitation of Fisher test

Highly expressed genes have a very large variance! As Fisher test does
not estimate variance, it tends to detect false positives among highly
expressed genes = do not use it!

Nathalie Villa-Vialaneix (INRA, MIAT) Biostatistics - RNAseq 29/37




Basic principles of tests for count data: 2 conditions and
replicates
Notations: for gene g, Kgn, Kg}m (condition 1) and K§1,
(condition 2)
@ choose an appropriate distribution to model count data (discrete data,
overdispersion)

K2

anz

@ estimate its parameters for both conditions

@ conclude by calculating p-value
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Basic principles of tests for count data: 2 conditions and

replicates
Notations: for gene g, Kg1
(condition 2)
@ choose an appropriate distribution to model count data (discrete data,
overdispersion)

., K2

s Kgp, (condition 1) and K2 G,

12 glr

Kg ~ NB(S{ Ak, 6g)

in which:
> s/ is library size of sample j in condition k
» Agk is the proportion of counts for gene g in condition k
> ¢g is the dispersion of gene g (supposed to be identical for all samples)

@ estimate its parameters for both conditions

@ conclude by calculating p-value
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Basic principles of tests for count data: 2 conditions and

replicates
Notations: for gene g, Kg1
(condition 2)
@ choose an appropriate distribution to model count data (discrete data,
overdispersion)

., K2

s Kgp, (condition 1) and K2 G,

12 glr

Kg ~ NB(S{ Ak, 6g)

in which:
> s/ is library size of sample j in condition k
» Agk is the proportion of counts for gene g in condition k
> ¢g is the dispersion of gene g (supposed to be identical for all samples)

@ estimate its parameters for both conditions
Ag1 Adg2 &g
@ conclude by calculating p-value
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Basic principles of tests for count data: 2 conditions and

replicates
Notations: for gene g, Kg1
(condition 2)
@ choose an appropriate distribution to model count data (discrete data,
overdispersion)

., K2

s Kgp, (condition 1) and K2 G,

12 glr

K& ~ NB(s{ Agk, ¢g)

in which:
> s}‘ is library size of sample j in condition k
» Agk is the proportion of counts for gene g in condition k
> ¢, is the dispersion of gene g (supposed to be identical for all samples)

@ estimate its parameters for both conditions
Ag1 Adg2 &g
@ conclude by calculating p-value = Test
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First method: Exact Negative Binomial test
[Robinson and Smyth, 2008]

Normalization is performed to get equal size librairies = s

K!. + ...+ K! ~NB(sdg1,$5/n1) (and similarly for the second condition)
g1 an g1>Pg
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First method: Exact Negative Binomial test
[Robinson and Smyth, 2008]

Normalization is performed to get equal size librairies = s

K!. + ...+ K! ~NB(sdg1,$5/n1) (and similarly for the second condition)
g1 an g1>Pg

@ 141 and Ay are estimated (mean of the distributions)
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First method: Exact Negative Binomial test
[Robinson and Smyth, 2008]

Normalization is performed to get equal size librairies = s

Ky + -+ Kgn, ~ NB(s4g1, ¢¢/n1) (and similarly for the second condition)

@ 141 and Ay are estimated (mean of the distributions)

Q ¢g is estimated independently of 141 and Ag2, using different
approaches to account for small sample size
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First method: Exact Negative Binomial test
[Robinson and Smyth, 2008]

Normalization is performed to get equal size librairies = s
K;1 + ...+ Kjn, ~ NB(s4g1, ¢g/n1) (and similarly for the second condition)
@ 141 and Ay are estimated (mean of the distributions)

@ ¢, is estimated independently of 141 and A2, using different
approaches to account for small sample size

© The test is performed similarly as for Fisher test (exact probability
calculation according to estimated paramters)
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Estimating the dispersion parameter ¢4

Some methods:
@ DESeq, DESeq2: ¢, is a smooth function of 15 = 441 = Ag2

dge <- estimateDispersion(dge)

@ edgeR: estimate a common dispersion parameter for all genes and
use it as a prior in a Bayesian approach to estimate a gene specific
dispersion parameter

dge <- estimateCommonDisp (dge)
dge <- estimateTagwiseDisp(dge)
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Perform the test

Some methods:

@ DESeq, DESeq2: exact (DESeq) or approximate (Wald and LR in
DESeq2) tests

res <- nbinomWaldTest (dge)

res <- nbinomLR(dge)
results(res)

results(res)

@ edgeR: exact tests

res <- exactTest(dge)
topTags (res)

(comparison between methods in [Zhang et al., 2014])
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More complex experiments: GLM
Framework:
in which:

@ s;is the library size for sample j;
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More complex experiments: GLM
Framework:
Kgi ~ NB(ugj, ¢g) with log(ugj) = log(s;) + log(4g))
in which:
@ s;is the library size for sample j;

@ log(A1g) is estimated (for instance) by a Generalized Linear Model
(GLM):
log(1gj) = Ao + X/ Bg

in which x; is a vector of covariates.
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More complex experiments: GLM

Framework:

in which:
@ s;is the library size for sample j;

@ log(1g) is estimated (for instance) by a Generalized Linear Model
(GLM):
log(1gj) = Ao + X/ Bg

in which x; is a vector of covariates.

GLM allows to decompose the effects on the mean of
@ different factors
@ their interactions
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More complex experiments: GLM in practice

edgeR

dge <- estimateDisp(dge, design)
fit <- glmFit(dge, design)

res <- glmRT(fit, ...)

topTags (res)

DESeq, DESeq2

dge <- newCountDataSet(counts, design)
dge <- estimateSizeFactors(dge)

dge <- estimateDispersions(dge)

fit <- fitNbinomGLMs(dge, count ~ ...)
fit® <- fitNbinomGLMs (dge, count ~ 1)
res <- nbinomGLMTest(fit, £fit0®)
p.adjust(res, method = "BH")
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Alternative approach: linear model for count data
[Law et al., 2014], limma
Basic idea:

@ data are transformed so that they are approximately normally
distributed

tcount <- voom(counts, design)

@ alinear (Gaussian) model is fitted (with a Bayesian approach to
improve FDR [McCarthy and Smyth, 2009]):

Kgj ~ N(ﬂgj’ ‘73)

with _
E(KQ)==ﬁoﬁ-X7ﬁg

fit <- 1mFit(tcount, design)
fit <- eBayes(fit)
topTables(fit, ...)
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Practical session
@ use the same data as before;
@ run the analysis with different approaches (using exact test or GLM or
voom + LM);
@ compare the results...
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