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A typical transcriptomic experiment
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Some features of RNAseq data
What must be taken into account?

discrete, non-negative data (total number of aligned reads)

skewed data

overdispersion (variance� mean)
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Some features of RNAseq data
What must be taken into account?

discrete, non-negative data (total number of aligned reads)

skewed data

overdispersion (variance� mean)

black line is
“variance = mean”
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Steps in RNAseq data analysis
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Part I: Normalization
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Purpose of normalization

identify and correct technical biases (due to sequencing process) to
make counts comparable

types of normalization: within sample normalization and between
sample normalization
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Source of variation in RNA-seq experiments

1 at the top layer: biological variations (i.e., individual
differences due to e.g., environmental or genetic
factors)

2 at the middle layer: technical variations (library effect)

3 at the bottom layer: technical variations (lane and cell
flow effects)

lane effect < cell flow effect < library effect� biological effect
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Within sample normalization
Example: (read counts)

sample 1 sample 2 sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts for gene B are twice larger than counts for gene A because:

Purpose of within sample comparison: enabling comparisons of
genes from a same sample
Sources of variability: gene length, sequence composition (GC
content)

These differences need not to be corrected for a differential analysis and
are not really relevant for data interpretation.
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gene A 752 615 1203
gene B 1507 1225 2455

counts for gene B are twice larger than counts for gene A because:

both genes are expressed with the same number of transcripts but
gene B is twice longer than gene A

gene A gene B

Purpose of within sample comparison: enabling comparisons of
genes from a same sample
Sources of variability: gene length, sequence composition (GC
content)
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are not really relevant for data interpretation.

Nathalie Villa-Vialaneix (INRA, MIAT) Biostatistics - RNAseq 9 / 37



Within sample normalization

Purpose of within sample comparison: enabling comparisons of
genes from a same sample

Sources of variability: gene length, sequence composition (GC
content)

These differences need not to be corrected for a differential analysis and
are not really relevant for data interpretation.

Nathalie Villa-Vialaneix (INRA, MIAT) Biostatistics - RNAseq 9 / 37



Between sample normalization
Example: (read counts)

sample 1 sample 2 sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:

Purpose of between sample comparison: enabling comparisons of a
gene in different samples
Sources of variability: library size, ...

These differences must be corrected for a differential analysis and for data
interpretation.
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Between sample normalization
Example: (read counts)

sample 1 sample 2 sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:

gene A is more expressed in sample 3 than in sample 2

gene A in sample 2 gene A in sample 3

Purpose of between sample comparison: enabling comparisons of a
gene in different samples
Sources of variability: library size, ...

These differences must be corrected for a differential analysis and for data
interpretation.
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Between sample normalization
Example: (read counts)

sample 1 sample 2 sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:

gene A is expressed similarly in the two samples but sequencing
depth is larger in sample 3 than in sample 2 (i.e., differences in library
sizes)

gene A in sample 2 gene A in sample 3

Purpose of between sample comparison: enabling comparisons of a
gene in different samples
Sources of variability: library size, ...

These differences must be corrected for a differential analysis and for data
interpretation.
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Between sample normalization

Purpose of between sample comparison: enabling comparisons of a
gene in different samples

Sources of variability: library size, ...

These differences must be corrected for a differential analysis and for data
interpretation.
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Principles for sequencing depth normalization
Basics

1 choose an appropriate baseline for each sample
2 for a given gene, compare counts relative to the baseline rather than

raw counts

Consequences: Library sizes for normalized counts are roughly equal.

control treated

Gene 1 5.5 1.6 0 0 5.6 0 0

Gene 2 0 3.2 0.6 1.4 1.4 0 0

Gene 3 101.2 257.6 45.6 49 196 61.6 56

: : :

: : :

: : :

Gene G 16.5 40 5.4 5.5 28 9.8 13.6

  +
Lib. size 13.1 13.0 13.2 13.1 13.2 13.0 13.1 x 105

Definition
If Kgj is the raw count for gene g in sample j then, the normalized counts is
defined as:

K̃gj =
Kgj

sj

in which sj = C−1
j is the scaling factor for sample j.

Three types of methods:
distribution adjustment
method taking length into account
the “effective library size” concept
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Principles for sequencing depth normalization
Basics

1 choose an appropriate baseline for each sample
2 for a given gene, compare counts relative to the baseline rather than

raw counts

In practice: A correction multiplicative factor is calculated for every sample
control treated
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Principles for sequencing depth normalization

Definition
If Kgj is the raw count for gene g in sample j then, the normalized counts is
defined as:
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Distribution adjustment
Total read count adjustment [Mortazavi et al., 2008]

sj =
Dj

1
N

∑N
l=1 Dl

in which N is the number of samples and Dj =
∑

g Kgj .
raw counts normalized counts
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edgeR:

cpm(...,
normalized.lib.sizes=TRUE)
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Distribution adjustment
Total read count adjustment [Mortazavi et al., 2008]
(Upper) Quartile normalization [Bullard et al., 2010]

sj =
Q(p)

j

1 ∑N
l=1 Q(p)

l

in which Q(p)
j is a given quantile (generally 3rd quartile) of the count

distribution in sample j.
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Method using gene lengths (intra & inter sample
normalization)

RPKM: Reads Per Kilobase per Million mapped Reads

Assumptions: read counts are proportional to expression level, transcript
length and sequencing depth

sj =
DjLg

103 × 106

in which Lg is gene length (bp).

edgeR:

rpkm(..., gene.length = ...)

Unbiaised estimation of number of reads but affect variability
[Oshlack and Wakefield, 2009].
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Relative Log Expression (RLE)
[Anders and Huber, 2010], edgeR - DESeq - DESeq2
Method:

1 compute a pseudo-reference sample: geometric mean across
samples

Rg =

 N∏
j=1

Kgj


1/N

(geometric mean is less sensitive to extreme values than standard
mean)
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Sample 1

Sample 2

2 center samples compared to the reference
3 calculate normalization factor: median of centered counts over the

genes
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Relative Log Expression (RLE)
[Anders and Huber, 2010], edgeR - DESeq - DESeq2
Method:

1 compute a pseudo-reference sample
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Relative Log Expression (RLE)
[Anders and Huber, 2010], edgeR - DESeq - DESeq2
Method:

1 compute a pseudo-reference sample
2 center samples compared to the reference
3 calculate normalization factor: median of centered counts over the

genes

s̃j = median
g
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}
factors multiply to 1: sj =
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exp
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Relative Log Expression (RLE)
[Anders and Huber, 2010], edgeR - DESeq - DESeq2
Method:

1 compute a pseudo-reference sample
2 center samples compared to the reference
3 calculate normalization factor: median of centered counts over the

genes
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## with edgeR
calcNormFactors(...,
method="RLE")

## with DESeq
estimateSizeFactors(...)
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Trimmed Mean of M-values (TMM)
[Robinson and Oshlack, 2010], edgeR

Assumptions behind the method
the total read count strongly depends on a few highly expressed
genes

most genes are not differentially expressed
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On remaining data, calculate the
weighted mean of M-values:
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∑
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g:not trimmed
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with wg(j, r) =
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Trimmed Mean of M-values (TMM)
[Robinson and Oshlack, 2010], edgeR
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Trimmed Mean of M-values (TMM)
[Robinson and Oshlack, 2010], edgeR

Assumptions behind the method
the total read count strongly depends on a few highly expressed
genes

most genes are not differentially expressed

Correction factors:

s̃j = 2TMM(j,r) factors multiply to 1: sj =
s̃j

exp
(

1
N

∑N
l=1 log(s̃l)

)
calcNormFactors(..., method="TMM")
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Comparison of the different approaches
[Dillies et al., 2013], (6 simulated datasets)

Purpose of the comparison:

finding the “best” method for all cases is not a realistic purpose

find an approach which is robust enough to provide relevant results in
all cases

Method: comparison based on several criteria to select a method
which is valid for multiple objectives
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Comparison of the different approaches
[Dillies et al., 2013], (6 simulated datasets)

Effect on count distribution:

RPKM and TC are very similar to raw data.
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Comparison of the different approaches
[Dillies et al., 2013], (6 simulated datasets)

Effect on differential analysis (DESeq v. 1.6):

Inflated FPR for all methods except for TMM and DESeq (RLE).
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Comparison of the different approaches
[Dillies et al., 2013], (6 simulated datasets)

Conclusion: Differences appear based on data characteristics

TMM and DESeq (RLE) are performant in a differential analysis context.
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Practical session
import and understand data;
run different types of normalization;
compare the results...
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Part II: Differential expression analysis
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Different steps in hypothesis testing
1 formulate an hypothesis H0:

H0: the average count for gene g in the control samples is the
same that the average count in the treated samples

which is tested against an alternative H1: the average count for gene
g in the control samples is different from the average count in the
treated samples

2 from observations, calculate a test statistics (e.g., the mean in the two
samples)

3 find the theoretical distribution of the test statistics under H0
4 deduce the probability that the observations occur under H0: this is

called the p-value
5 conclude: if the p-value is low (usually below α = 5% as a

convention), H0 is unlikely: we say that “H0 is rejected”.
We have that: α = PH0(H0 is rejected).
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Summary of the possible decisions

Not reject H0 Reject H0
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Types of errors in tests

Reality

H0 is true H0 is false

D
ec

is
io

n Do not reject H0
Correct decision Type II error

, (True Negative) / (False Negative)

Reject H0
Type I error Correct decision

/ (False Positive) , (True Positive)

P(Type I error) = α (risk)

P(Type II error) = 1 − β ( β: power)
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Why performing a large number of tests might be a
problem?
Framework: Suppose you are performing G tests at level α.

P(at least one FP if H0 is always true) = 1 − (1 − α)G

Ex: for α = 5% and G = 20,
P(at least one FP if H0 is always true) ' 64%!!!

Probability to have at least one false positive versus the number of tests
performed when H0 is true for all G tests
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y For more than 75 tests and if H0 is

always true, the probability to have at
least one false positive is very close
to 100%!
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Notation for multiple tests
Number of decisions for G independent tests:

True null False null Total

hypotheses hypotheses

Rejected U V R

Not rejected G0 − U G1 − V G − R

Total G0 G1 G

Instead of the risk α, control:
familywise error rate (FWER): FWER = P(U > 0) (i.e., probability to
have at least one false positive decision)
false discovery rate (FDR): FDR = E(Q) with

Q =

 U/R if R > 0

0 otherwise
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Adjusted p-values

Settings: p-values p1, . . . , pG (e.g., corresponding to G tests on G
different genes)

Adjusted p-values
adjusted p-values are p̃1, . . . , p̃G such that

Rejecting tests such that p̃g < α ⇐⇒ P(U > 0) ≤ α or E(Q) ≤ α

Calculating p-values
1 order the p-values p(1) ≤ p(2) ≤ . . . ≤ p(G)

2 calculate p̃(g) = agp(g)
I with Bonferroni method: ag = G (FWER)
I with Benjamini & Hochberg method: ag = G/g (FDR)

3 if adjusted p-values p̃(g) are larger than 1, correct p̃(g) ← min{p̃(g), 1}
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Fisher’s exact test for contingency tables

After normalization, one may build a contingency table like this one:

treated control Total

gene g ngA ngB ng

other genes NA − ngA NB − ngB N − ng

Total NA NB N

Question: is the number of reads of gene g in the treated sample
significatively different than in the control sample?

Method
Direct calculation of the probability to obtain such a contingency table (or a
“more extreme” contingency table) with:

independency between the two columns of the contingency tables;

the same marginals (“Total”).
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Example of results obtained with the Fisher test
Genes declared significantly differentially expressed are in pink:
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Main remark: more
conservative for genes with a
low expression

Limitation of Fisher test
Highly expressed genes have a very large variance! As Fisher test does
not estimate variance, it tends to detect false positives among highly
expressed genes⇒ do not use it!
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Basic principles of tests for count data: 2 conditions and
replicates
Notations: for gene g, K1

g1, ..., K1
gn1

(condition 1) and K2
g1, ..., K2

gn2

(condition 2)
choose an appropriate distribution to model count data (discrete data,
overdispersion)

K k
gj ∼ NB(sk

j λgk , φg)

in which:
I sk

j is library size of sample j in condition k
I λgk is the proportion of counts for gene g in condition k
I φg is the dispersion of gene g (supposed to be identical for all samples)

estimate its parameters for both conditions

λg1 λg2 φg

conclude by calculating p-value

⇒ Test

H0 : {λg1 = λg2}
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First method: Exact Negative Binomial test
[Robinson and Smyth, 2008]

Normalization is performed to get equal size librairies⇒ s

K1
g1 + . . .+ K1

gn1
∼ NB(sλg1, φg/n1) (and similarly for the second condition)

1 λg1 and λg2 are estimated (mean of the distributions)

2 φg is estimated independently of λg1 and λg2, using different
approaches to account for small sample size

3 The test is performed similarly as for Fisher test (exact probability
calculation according to estimated paramters)
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Estimating the dispersion parameter φg

Some methods:

DESeq, DESeq2: φg is a smooth function of λg = λg1 = λg2

dge <- estimateDispersion(dge)
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edgeR: estimate a common dispersion parameter for all genes and
use it as a prior in a Bayesian approach to estimate a gene specific
dispersion parameter

dge <- estimateCommonDisp(dge)
dge <- estimateTagwiseDisp(dge)

Nathalie Villa-Vialaneix (INRA, MIAT) Biostatistics - RNAseq 32 / 37



Perform the test

Some methods:

DESeq, DESeq2: exact (DESeq) or approximate (Wald and LR in
DESeq2) tests

res <- nbinomWaldTest(dge)
results(res)

res <- nbinomLR(dge)
results(res)

edgeR: exact tests

res <- exactTest(dge)
topTags(res)

(comparison between methods in [Zhang et al., 2014])
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More complex experiments: GLM

Framework:

Kgj ∼ NB(µgj , φg) with log(µgj) = log(sj) + log(λgj)

in which:

sj is the library size for sample j;

log(λgj) is estimated (for instance) by a Generalized Linear Model
(GLM):

log(λgj) = λ0 + x>j βg

in which xi is a vector of covariates.

GLM allows to decompose the effects on the mean of

different factors

their interactions
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More complex experiments: GLM in practice

edgeR

dge <- estimateDisp(dge, design)
fit <- glmFit(dge, design)
res <- glmRT(fit, ...)
topTags(res)

DESeq, DESeq2

dge <- newCountDataSet(counts, design)
dge <- estimateSizeFactors(dge)
dge <- estimateDispersions(dge)
fit <- fitNbinomGLMs(dge, count ~ ...)
fit0 <- fitNbinomGLMs(dge, count ~ 1)
res <- nbinomGLMTest(fit, fit0)
p.adjust(res, method = "BH")
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Alternative approach: linear model for count data
[Law et al., 2014], limma
Basic idea:

1 data are transformed so that they are approximately normally
distributed

tcount <- voom(counts, design)

2 a linear (Gaussian) model is fitted (with a Bayesian approach to
improve FDR [McCarthy and Smyth, 2009]):

K̃gj ∼ N(µgj , σ
2
g)

with
E(K̃gj) = β0 + x>j βg

fit <- lmFit(tcount, design)
fit <- eBayes(fit)
topTables(fit, ...)
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Practical session
use the same data as before;
run the analysis with different approaches (using exact test or GLM or
voom + LM);
compare the results...
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