Network analysis in response to calorie restriction
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Maintenance of weight loss: an obstacle in successful
treatment of obese individuals

Medical treatment of obesity: 80%
failled after one year (wing RR, Am J Clin Nutr,

2005); it doesn’t work!

Surplus energy storage
In adipose tissue




Weight follow-up after enerqy restriction induced weight loss

. . G “diogenes
Effect of glycemic index and protein content P AN
EU project, 8 centres, 450 families -
o Follow-up
Restriction Ad libitum, 5 dietary branches:
800 kcal/d Low/high Gl
Modifast® Low/high protein
| | Control |
| ! |
8 weeks 6 months CID3

CID1 CID2
Randomization

(>- 8% weight loss)

CID: « Clinical Intervention Day »
*Anthropometry
*Blood and urine sampling
*Adipose tissue biopsies




Giogenes 3 types of data in 135 women

Ad libitum
Low/high Gl
Low/high protein

Bio-clinical data: , LCD | Follow-up Control |
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SCIENCE & IMPACT

Giving expression data, how to build a graph whose edges
represent the direct links between genes?

Example: co-expression networks built from microarray/RNAseq data (nodes =
genes; edges = significant “direct links” between expressions of two genes)
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Inference

Giving expression data, how to build a graph whose edges
represent the direct links between genes?

Graph mining (examples)
@ Network visualization: nodes are not a priori given a position.

Positions aiming at representing connected

Random positions

nodes closer
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Graph mining (examples)

@ Network visualization: nodes are not a priori given a position.
@ Network clustering: identify “communities”

T
before ~2010)
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Giving expression data, how to build a graph whose edges
represent the direct links between genes?



References

Experimental protocol

135 obese women and 3 times: before LCD, after a 2-month LCD
and 6 months later (between the end of LCD and the last
measurement, women are randomized into one of 5 recommended
diet groups).

At every time step, 221 gene expressions, 28 fatty acids and 15
clinical variables (i.e., weight, HDL, ...)
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Experimental protocol

135 obese women and 3 times: before LCD, after a 2-month LCD
and 6 months later (between the end of LCD and the last
measurement, women are randomized into one of 5 recommended
diet groups).

At every time step, 221 gene expressions, 28 fatty acids and 15
clinical variables (i.e., weight, HDL, ...)

Correlations between gene expressions and between a gene
expression and a fatty acid levels are not of the same order:
inference method must be different inside the groups and between
two groups.
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Data pre-processing

At CID3, individuals are split into three groups: weight loss, weight
regain and stable weight (groups are not correlated to the diet
group according to y2-test).
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Intra-level networks: use of partial correlations and a sparse

approach (graphical Lasso as in the R package gLasso) to select
edges [Friedman et al., 2008]
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Intra-level networks: use of partial correlations and a sparse
approach (graphical Lasso as in the R package gLasso) to select
edges [Friedman et al., 2008]

Inter-levels networks: use of regularized CCA (as in the R package
mixOmics) to evaluate strength of the correlations
[Lé Cao et al., 2009]
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Intra-level networks: use of partial correlations and a sparse
approach (graphical Lasso as in the R package gLasso) to select
edges [Friedman et al., 2008]

Inter-levels networks: use of regularized CCA (as in the R package
mixOmics) to evaluate strength of the correlations
[Lé Cao et al., 2009]

Combination of the 6 informations: tune the number of edges intra
or inter-levels so that it is of the order of the number of nodes in the
corresponding level(s)
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Visualiza

way?

Purpose: How to display the nodes in a meaningful and aesthetic
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Purpose: How to display the nodes in a meaningful and aesthetic
way?

Standard approach: force directed placement algorithms (FDP)
(e.g., [Fruchterman and Reingold, 1991])
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way?

Purpose: How to display the nodes in a meaningful and aesthetic

Standard approach: force directed placement algorithms (FDP)
(e.g., [Fruchterman and Reingold, 1991])

@ attractive forces: similar to springs along the edges
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way?

Purpose: How to display the nodes in a meaningful and aesthetic

Standard approach: force directed placement algorithms (FDP)
(e.g., [Fruchterman and Reingold, 1991])

vertices

@ attractive forces: similar to springs along the edges
@ repulsive forces: similar to electric forces between all pairs of
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Purpose: How to display the nodes in a meaningful and aesthetic
way?

Standard approach: force directed placement algorithms (FDP)
(e.g., [Fruchterman and Reingold, 1991])

iterative algorithm until stabilization of the vertex positions.
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vertex popularity.

@ vertex degree: number of edges adjacent to a given vertex.

Vertices with a high degree are called hubs: measure of the
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@ vertex degree: number of edges adjacent to a given vertex.
Vertices with a high degree are called hubs: measure of the
vertex popularity.

@ vertex betweenness: number of shortest paths between alll
pairs of vertices that pass through the vertex. Betweenness is
a centrality measure (vertices with a large betweenness that are the
most likely to disconnect the network if removed).

The orange node’s degree is equal to 2, its betweenness to 4.

£y

- ) .
E. Montastier & NV2 | network analysis in response to calorie restriction 7110



Fatty acids are highest centrality hubs
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End of intervention
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Cluster vertexes into groups that are densely connected and share
a few links (comparatively) with the other groups. Clusters are
often called communities (social sciences) or modules (biology).
Node modules are known to be more robust and meaningful than
individual relationships between pairs of nodes.
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Cluster vertexes into groups that are densely connected and share
a few links (comparatively) with the other groups. Clusters are
often called communities (social sciences) or modules (biology).
Node modules are known to be more robust and meaningful than
individual relationships between pairs of nodes.

Nodes were clustered using modularity maximization
[Newman and Girvan, 2004] performed with a deterministic
annealing algorithm as described in

[Reichardt and Bornholdt, 2006] (after comparison of several
approaches) and implemented in the function
spinglass.community of the R package igraph.
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5 networks inferred with 264 nodes each:
CIDA1 CIb2 CID3g1 CID3g2 | CID3g3
size LCC 244 251 240 259 258

density 2.3% 2.3% 2.3% 2.3% 2.3%

transitivity 17.2% 11.9% 21.6% 10.6% 10.4%
nb clusters | 14 (2-52) | 10 (4-52) | 11 (2-46) | 12 (2-51) | 12 (3-54)

clusters were visualized and analyzed for important node extraction

CID1 - Cluster4

CID 2 - Cluster 5
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Spin glass vertexes classification

At Baseline:

14 clusters, 3 of them with at least 2 types of variables
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Waist circumference is correlated with metabolic

syndrome transcripts independently of weight change

At baseline (CID1)
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Waist circumference is correlated with metabolic
syndrome transcripts independently of weight change

« Weight loss » group (CID 3)

At baseline (CID1)




Waist circumference is correlated with metabolic
syndrome transcripts independently of weight change

« Weight regain» group (CATDICD 3)
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Increase in growth factors, angiogenesis and
proliferation signaling in women reqgaining weight

End of intervention:

Cancer signal
Growth Hormone signaling L Angiogenesis inhibition by TSP1
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Positive relationship between AT myristoleic acid content
and de novo lipogenesis mMRNAs in women losing weight

After restriction o End of intervention, “weight loss” group
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In conclusion:

e For the first time:

e Integrated approach of 2 omics (from the same biopsy)
* In adipose tissue

e Of a large number of patients

* In a longitudinal dietary intervention

e Well characterized individuals

e Myristoleic acid as a main lipidic biomarkers for de novo
lipogenesis: unexpected, and quantitatively minor fatty acid in
adipose tissue and plasma

* This original approach authorizes new advances in obesity and
insulin sensitivity patho-physiology understanding

* Biostatistics post-doctoral position open!
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Thank you for your attention
... questions?
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