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Framework

Notations and examples
Data: A weighted undirected network modeled by a graph G with n nodes
x1, . . . , xn with weight matrix W : Wij = Wji and Wii = 0.

For each node, one or multiple label(s) are given

C : xi → C(xi) ⊂ {c1, . . . , ck }

where cj is either a or a .

Examples: Weight of people in a social network, Number of visits of a web
page in WWW...
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x1, . . . , xn with weight matrix W : Wij = Wji and Wii = 0.
For each node, one or multiple label(s) are given

C : xi → C(xi) ⊂ {c1, . . . , ck }

where cj is either a numerical information or a factor information.

Examples: Gender in a social network, Functional group of a gene in a
gene interaction network...

Examples: Weight of people in a social network, Number of visits of a web
page in WWW...
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Framework

“Real world” examples
Example 1: Co-appearance network of the novel “Les Misérables” (Victor
Hugo) where the nodes are labeled with gender (F/M).
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Framework

“Real world” examples
Example 2: Co-purchase network: nodes are books sold by “Amazon” and
are labeled according to the political orientation of the book

Indivual
Transaction
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Framework

“Real world” examples
Modeling a large corpus of medieval documents

Notarial acts (mostly baux à fief, more
precisely, land charters) established in a
seigneurie named “Castelnau Montratier”,
written between 1250 and 1500, involving
tenants and lords. a

a. http://graphcomp.univ-tlse2.fr

Indivual
Transaction

Labeled graphs data analysis (JdS 2012) Nathalie Villa-Vialaneix & Thibault Laurent Bruxelles, 05/23/2012 5 / 18

http://graphcomp.univ-tlse2.fr


Framework

“Real world” examples
Modeling a large corpus of medieval documents

• nodes: transactions and individuals
(3 918 nodes)

• edges: an individual is directly
involved in a transaction (6 455 edges)

• labels (transactions only): location
(parish)

Indivual
Transaction
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Framework

Questions?

Is there a link between the values of the nodes (ci)i and the network
structure?

Are the nodes labeled with a given value more connected to nodes with
the same value than expected? less connected?
where “expected” means: in comparison to a random distribution over the
network.
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Framework

First approach: Use of “spatial” indexes

[Laurent and Villa-Vialaneix, 2011], by identifying

• the spatial matrix (in spatial data)

• the adjacency matrix (in network)

calculate
JC =

1
2

∑
i,j

Wijξiξj

and a MC permutation test helps measuring the strength of the link
between the labels and the network structure.
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Framework

A toy example: “Les Misérables”
Data: Co-appearance network of the novel “Les Misérables” (Victor Hugo)
where the nodes are labeled with gender (F/M).
Empirical distribution with Monte Carlo approach (P = 1000)

Join counts for F/F
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Estimated p-value and conclusion
Gender Join count value Large Small
F 55 0.7932 (NS) 0.2068 (NS)
M 520 0.0224 (**) 0.9755 (NS)

Men have a tendency to interact with other men rather than with
women in “Les Misérables” whereas women don’t have a specific way to
be related according to gender.
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Network visualization based on labels
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Network visualization based on labels

Alternative approach: graph visualization
Main idea: Find a representation of the graph that enlighten the labels
information.

Graph visualization is a standard data mining tool to help the
user understand the network. Standard approach are force directed
placement algorithms as those introduced in
[Fruchterman and Reingold, 1991]

• attractive forces : along the edges (similar to springs)
• repulsive forces : between all pairs of vertices (similar to electric

forces)

iterative algorithm until stabilization of the nodes positions.
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Network visualization based on labels

State-of-the art: clustered graph visualization
Main idea: Labels can be seen as a clustering⇒ use visualization
approach that allows the nodes with the same labels to be displayed
close to each others.

• Modified force directed placement algorithms
• Use of latent variables

All these approaches:
• only consider the node’s label and do not use the neighbors’ labels;
• do not deal with multiple labels.
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Network visualization based on labels

State-of-the art: clustered graph visualization
Main idea: Labels can be seen as a clustering⇒ use visualization
approach that allows the nodes with the same labels to be displayed
close to each others.
• Modified force directed placement algorithms

[Bourqui et al., 2007, Eades and Feng, 1996,
Eades and Huang, 2000, Truong et al., 2007]: integrate additional
constraints into forces or constrain vertices to be displayed in a given
zone, according to their clusters;

• Use of latent variables
All these approaches:
• only consider the node’s label and do not use the neighbors’ labels;
• do not deal with multiple labels.
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Network visualization based on labels

State-of-the art: clustered graph visualization
Main idea: Labels can be seen as a clustering⇒ use visualization
approach that allows the nodes with the same labels to be displayed
close to each others.
• Modified force directed placement algorithms

The graph can be displayed in a simplified way (one “meta-node”
per cluster) as in [Rossi and Villa-Vialaneix, 2011].

• Use of latent variables
All these approaches:
• only consider the node’s label and do not use the neighbors’ labels;
• do not deal with multiple labels.
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Network visualization based on labels

State-of-the art: clustered graph visualization
Main idea: Labels can be seen as a clustering⇒ use visualization
approach that allows the nodes with the same labels to be displayed
close to each others.
• Modified force directed placement algorithms
• Use of latent variables [Bouveyron et al., 2009]

All these approaches:
• only consider the node’s label and do not use the neighbors’ labels;
• do not deal with multiple labels.
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PCA and kernel PCA based visualization
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PCA and kernel PCA based visualization

PCA based on neighbors’ labels distribution
Denote:
• E the disjunctive encoding of nodes’ labels

Eij =

{
1 if cj ∈ C(xi)
0 if cj < C(xi)

• Pl , the labels distribution among the neighbors:

Pl = D−1WE

where D = Diag(d1, . . . , dn) with di degree of node xi .
Display the graph with the coordinates in the Weighted PCA of Pl where
columns are weighted by nj

n with nj =
∣∣∣{xi : cj ∈ C(xi)}

∣∣∣.
Remark: This choice is similar to the use of the χ2 metric:

δ(pi , pi′) =
∑

c

n
nc

(
nic

di
−

ni′c

di′

)2
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PCA and kernel PCA based visualization

Kernel based approach

Previous method drawbacks:

• do not use the label of the node but only those of its neighbors;

• only use the direct neighbors’ labels.

Alternative approach: Use a diffusion process by means of the heat
kernel

Kβ = e−βL

where L = D −W .
Heat kernel features:

• has a simple interpretation regarding a diffusion process along the
edges of the graph;

• can be viewed as a dot product between nodes in an embedding
space:

Kβ
ij ≡ Kβ(xi , xj) = 〈φ(xi), φ(xj)〉Kβ
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PCA and kernel PCA based visualization

Kernel PCA for labeled graph visualization

• Use KβE instead of Pl to represent the labels distribution among the
neighbors (the node’s label is used):

f̃βic = 〈φ(xi),
∑

j:cj=c

φ(xj)〉Kβ

• Display the graph with the coordinates in the Weighted PCA of KβE
where columns are weighted by nj

n with nj =
∣∣∣{xi : cj ∈ C(xi)}

∣∣∣.
Various β will provide various representation: small β favor direct
neighbors.

Labeled graphs data analysis (JdS 2012) Nathalie Villa-Vialaneix & Thibault Laurent Bruxelles, 05/23/2012 15 / 18



PCA and kernel PCA based visualization

Kernel PCA for labeled graph visualization

• Use KβE instead of Pl to represent the labels distribution among the
neighbors (the node’s label is used):

f̃βic = 〈φ(xi),
∑

j:cj=c

φ(xj)〉Kβ

• Display the graph with the coordinates in the Weighted PCA of KβE
where columns are weighted by nj

n with nj =
∣∣∣{xi : cj ∈ C(xi)}

∣∣∣.

Various β will provide various representation: small β favor direct
neighbors.

Labeled graphs data analysis (JdS 2012) Nathalie Villa-Vialaneix & Thibault Laurent Bruxelles, 05/23/2012 15 / 18



PCA and kernel PCA based visualization

Kernel PCA for labeled graph visualization

• Use KβE instead of Pl to represent the labels distribution among the
neighbors (the node’s label is used):

f̃βic = 〈φ(xi),
∑

j:cj=c

φ(xj)〉Kβ

• Display the graph with the coordinates in the Weighted PCA of KβE
where columns are weighted by nj

n with nj =
∣∣∣{xi : cj ∈ C(xi)}

∣∣∣.
Various β will provide various representation: small β favor direct
neighbors.

Labeled graphs data analysis (JdS 2012) Nathalie Villa-Vialaneix & Thibault Laurent Bruxelles, 05/23/2012 15 / 18



Examples

Plan

1 Framework

2 Network visualization based on labels

3 PCA and kernel PCA based visualization

4 Examples

Labeled graphs data analysis (JdS 2012) Nathalie Villa-Vialaneix & Thibault Laurent Bruxelles, 05/23/2012 16 / 18



Examples

Polbooks
Co-purchase network: nodes are books sold by “Amazon” and are labeled
according to the political orientation of the book.
Labels representation

Network representation

Main conclusions:
• Strong relations between labels and graph structure: nodes with the

same labels also have the same labels distribution among their
respective neighbors;

• Provide a more subtle interpretation of the book’s political
orientation (ex: “World of Vulcain” is conservative but close to liberal)

• Differences between the two representations (ex: “Plan of attack” is
frequently co-purchased with liberal books that are themselves
frequently co-purchased with non-liberal books)
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Examples

Medieval
Bipartite graph
• nodes: transactions and individuals (3 918 nodes)
• edges: an individual is directly involved in a transaction (6 455 edges)
• labels (transactions only): location (parish)
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Examples

Medieval
PCA applied on the individuals only (projected network) based on the
location distribution among transactions (multiple labels).
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Examples

Medieval
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