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I B2ckground and notations
Background

e Purpose: predict Y from X;

e What we have: n observations of (X, Y), (x1,y1), .-, (Xn, ¥n);
e What we want: estimate unknown Y from new X: xp11, ..., Xm.
X can be:

e numeric variables;
e or factors;
e or a combination of numeric variables and factors.
Y can be:
e a numeric variable (Y € R) = (supervised) regression régression;

e a factor = (supervised) classification discrimination.

Formation INRA (Niveau 3) Nathalie Villa-Vialaneix 4 /37



Basics

From (x;, y;)i, definition of a machine, " s.t.:
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Basics

From (x;, y;)i, definition of a machine, " s.t.:

ynew = q)n(xnew)-

e if Y is numeric, ®" is called a regression function fonction de
classification;

e if Y is a factor, " is called a classifier classifieur;

®" is said to be trained or learned from the observations (x;, y;)i.
Desirable properties

e accuracy to the observations: predictions made on known data are
close to observed values;

e generalization ability: predictions made on new data are also
accurate.

Conflicting objectives!!
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) \nderfitting / Overfitting
Underfitting/Overfitting sous/sur - apprentissage

Function x — y to be estimated
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O ideal observalions
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) \nderfitting / Overfitting
Underfitting/Overfitting sous/sur - apprentissage

First estimation from the observations: underfitting
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) \nderfitting / Overfitting
Underfitting/Overfitting sous/sur - apprentissage

Second estimation from the observations: accurate estimation

Formation INRA (Niveau 3)



) \nderfitting / Overfitting
Underfitting/Overfitting sous/sur - apprentissage

Third estimation from the observations: overfitting
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Underfitting/Overfitting sous/sur - apprentissage

Summary

—— {ruefunction
—— underfitting
———— accurate
overfitting
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Errors

e training error (measures the accuracy to the observations)
e if y is a factor: misclassification rate

Hyi#yi, i=1,...,n}

n

e if y is numeric: mean square error (MSE)
1, >
- Z (3 — »i)
i=1
or root mean square error (RMSE) or pseudo-R?: 1 — MSE/Var((y;);)

e test error: a way to prevent overfitting (estimates the generalization
error)
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Errors

e training error (measures the accuracy to the observations)
e if y is a factor: misclassification rate

Hyi#yi, i=1,...,n}
n

e if y is numeric: mean square error (MSE)
1, >
n ; (Vi —vi)

or root mean square error (RMSE) or pseudo-R?: 1 — MSE/Var((y;);)
e test error: a way to prevent overfitting (estimates the generalization
error)
@ split the data into training/test sets (usually 80%/20%)
@ train ©" from the training dataset
@ calculate the test error from the remaining data

simple validation
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Example
Observations

o]

real life observations
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Example
Training/ Test datasets

training
test
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Example
Training/ Test errors

1.0

—  0.29/0.5
— 0.04/0.07
0.02/0.31
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Example

Summary error

A

test

train

—

model complexity
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Linear vs Nonparametric

Linear methods:
Y=8"X+e¢

(a priori on the type of link between X and Y)
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Linear vs Nonparametric

Linear methods:
Y=8"X+e¢

(a priori on the type of link between X and Y)
Here: nonparametric methods:

Y=0(X)+e

where @ is totally unknown.

(ML) Objective: Build ®" from the observations such that its
generalization error EL®" is (asymptotically) optimal.
Example (regression framework)

ELO" := E [(#"(X) — Y)?] == inf ELO

whatever (X, Y) distribution.
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Use case description

Data kindly provided by Laurence Liaubet described in
[Liaubet et al., 2011]:

e microarray data: expression of 272 selected genes over 56 individuals
(pigs);

e a phenotype of interest (muscle pH) measured over the 56 invididuals
(numerical variable).

file 1: genes expressions
file 2: muscle pH
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ENEHCInCEWORS  Overview
Basics [Bishop, 1995]

Common properties

e (artificial) “Neural networks”: general name for supervised and
unsupervised methods developed in analogy to the brain;
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R Overview
Basics [Bishop, 1995]
Common properties

e (artificial) “Neural networks”: general name for supervised and
unsupervised methods developed in analogy to the brain;

e combination (network) of simple elements (neurons).

Example of graphical representation:

INPUTS
S1ndLno
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Main features

A neural network is defined by:

@ the network structure;

@ the neuron type.
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Main features

A neural network is defined by:

@ the network structure;

@ the neuron type.

Standard examples
e Multilayer perceptrons (MLP) Perceptron multi-couches: dedicated
to supervised problems (classification and regression);
e Radial basis function networks (RBF): same purpose but based on
local smoothing;
e Self-organizing maps (SOM): dedicated to unsupervised problems
(clustering), self-organized,;
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N Overview
MLP: Advantages/Drawbacks

Advantages

e classification OR regression (i.e., Y can be a numeric variable or a
factor);

e non parametric method: no prior assumption needed;

e accurate (universal approximation).
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N Overview
MLP: Advantages/Drawbacks

Advantages

e classification OR regression (i.e., Y can be a numeric variable or a
factor);

e non parametric method: no prior assumption needed;
e accurate (universal approximation).
Drawbacks
e hard to train (high computational cost, especially when d is large);
¢ overfit easily;
e “black box” models (hard to interpret)
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Analogy to the brain
Dendrites

®
Cell body and nucleus \
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Analogy to the brain

r} Axon
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Analogy to the brain

Synapse
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Analogy to the brain

o9

If >~ > activation threshold then
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Analogy to the brain
— }

S

®
N

If >~ < activation threshold then
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) \\:ltilayer perceptron
(artificial) Perceptron
Layers

e MLP have one input layer (X values), one output layer (Y values) and
several hidden layers (only 1 is necessary);

e no connections within a layer;

e connections between two consecutive layers (feedforward).

Example:

genes expressions
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) \\:ltilayer perceptron
(artificial) Perceptron
Layers

e MLP have one input layer (X values), one output layer (Y values) and
several hidden layers (only 1 is necessary);

e no connections within a layer;

e connections between two consecutive layers (feedforward).

Example:

INPUTS

Weighted links
genes expressions Layer 1
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(artificial) Perceptron

Layers

e MLP have one input layer (X values), one output layer (Y values) and
several hidden layers (only 1 is necessary);

e no connections within a layer;
e connections between two consecutive layers (feedforward).

Example:

genes expressions Layer 1
Nathalie Villa-Vialaneix 16 / 37
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(artificial) Perceptron

Layers

e MLP have one input layer (X values), one output layer (Y values) and
several hidden layers (only 1 is necessary);

e no connections within a layer;

e connections between two consecutive layers (feedforward).

Example: _
2 hidden layers MLP

INPUTS

genes expressions Layer 1 Layer 2
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A neuron
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A neuron

wy (Bias Biais)
Standard activation functions fonctions de lien / d'activation

Biologically inspired: Heaviside function

& 0 if t < threshold;
5(t) = { 1 if not.
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A neuron

wy (Bias Biais)

Standard activation functions

Main issue with the Heaviside function: not continuous!
Logistic function

S(t) = 7=
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Summary
If Y is numeric, linear output:

p d
2 1 0
VxRS A =) wS (Z g )) |
Jj=1 k=1

W(l) neuron 1

INPUTS
S1Nd1no

No analytical expression!!
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Summary
If Y is a factor, logistic output:

P d
2 1 0
Vx € RY B(X = Clx =) = Fu() = § {Z s (Z g5t )>]
j=1 k=1

(with a maximum probability rule for the final classification)

W(l) neuron 1

INPUTS
S1NdL1no

No analytical expression!! o
Formation INRA (Niveau 3) Nathalie Villa-Vialaneix 18 / 37




Universal approximation

[Hornik et al., 1989] (among others)

For any given ®, smooth enough and any precision ¢, there exists a
one-hidden layer perceptron (with sigmoid activation functions) that
approximates ® with a precision at most e.

Formation INRA (Niveau 3) Nathalie Villa-Vialaneix 19 / 37




Learning weights
p is given

Chose w s.t.: .

1 2
w" = arg min z; (vi = Fw())”
=

(MSE minimization)
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Learning weights
p is given

Chose w s.t.: .

1 5
w" = arg min z; (vi — Fu(x))°-
=
(MSE minimization)
Main issues:
@ no exact solution (= approximation algorithms, e.g., Newton's
method + backpropagation principle): local minima;

Erreur

Poids
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Learning weights
p is given

Chose w s.t.: .

n __ . 1 2
w" = arg min ; (vi — Fu(x))°-
(MSE minimization)
Main issues:
@ no exact solution (= approximation algorithms, e.g., Newton’s
method + backpropagation principle): local minima;
@ overfitting: the larger p is, the more flexible the perceptron is and the

more it can overfit the data.
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Overfitting

true function
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Overfitting

true function

Weight decay can help improve the generalization ability:

n

.1 2
w" = arg mmlln - Zl (vi — Fw(xi)) —i-)\Hsz
1=

] = =
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I [carning/Tuning
Tuning p and A

p and X are called hyperparameters hyper-paramétres (not learned from
the data but tuned).
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I [carning/Tuning
Tuning p and A

p and X are called hyperparameters hyper-paramétres (not learned from
the data but tuned).
e grid search using a simple validation;

e grid search using a (K-fold) cross validation (better but
computationally expensive when K is large).
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Cross validation

Algorithm
1: Set the grid search for p, Gy, and A, Gy
2: Split the data into K groups
3: for pc G, and A € G, do
4. for group = 1..K do
5: Train model, » group Without observations in “group”
6: Test error, MSE, ) group for observations in “group”
7:  end for
8:  Average MSE, ) group Over “group” = MSE, \
9: end for

—
o

: Select p and A with minimum MSE, »
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6: Test error, MSE, ) group for observations in “group”
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Cross validation

Algorithm
1: Set the grid search for p, Gy, and A, Gy
2: Split the data into K groups
3: for pc G, and A € G, do
4. for group = 1..K do
5: Train model, » group Without observations in “group”
6: Test error, MSE, ) group for observations in “group”
7:  end for
8:  Average MSE, ) group Over “group” = MSE, \
9: end for

10: Select p and A with minimum MSE, )

n-fold cross validation is called Leave-One-Out (LOO).
Standard choice for K: LOO or 10-fold CV.
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Overview

CART: Classification And Regression Trees introduced by
[Breiman et al., 1984].
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Overview

CART: Classification And Regression Trees introduced by
[Breiman et al., 1984].
Advantages

e classification OR regression (i.e., Y can be a numeric variable or a
factor);

e non parametric method: no prior assumption needed;

e can deal with a large number of input variables, either numeric
variables or factors (a variable selection is included in the method);

e provide an intuitive interpretation.
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Overview

CART: Classification And Regression Trees introduced by
[Breiman et al., 1984].
Advantages

e classification OR regression (i.e., Y can be a numeric variable or a
factor);

e non parametric method: no prior assumption needed;

e can deal with a large number of input variables, either numeric
variables or factors (a variable selection is included in the method);

e provide an intuitive interpretation.
Drawbacks
e require a large training dataset to be efficient;

e as a consequence, are often too simple to provide accurate
predictions.
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Example
X = (Gender, Age, Height) and Y = Weight

(terminal node)

Formation INRA (Niveau 3) Nathalie Villa-Vialaneix 26 / 37



B [carnine
CART learning process

Algorithm

1: Start from root

2: repeat

3:  move to a “new” node

4.  if the node is homogeneous or small enough then

5: STOP

6: else

7 split the node into two child nodes with maximal “homogeneity”
8: end if

9: until all nodes are processed
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AR Learning
Further details

Homogeneity?
e if Y is a numeric variable, variance of (y;); for the observations
assigned to the node (Gini index is also sometimes used);
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whose Y values are not the node majority class.
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whose Y values are not the node majority class.

Stopping criteria?
e Minimum size node (generally 1 or 5)
e Minimum node purity or variance

e Maximum tree depth

Formation INRA (Niveau 3)



Further details

Homogeneity?
e if Y is a numeric variable, variance of (y;); for the observations
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Further details

Homogeneity?
e if Y is a numeric variable, variance of (y;); for the observations
assigned to the node (Gini index is also sometimes used);

e if Y is a factor, node purity: % of observations assigned to the node
whose Y values are not the node majority class.

Stopping criteria?
e Minimum size node (generally 1 or 5)
e Minimum node purity or variance
e Maximum tree depth

Hyperparameters can be tuned by cross-validation using a grid search.
An alternative approach is pruning...
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Choosing an optimal subtree

Algorithm

1: Train the maximal tree, T

2: Pruning: Find an “optimal” subtrees sequence (7y)k=1,. «

3: By cross validation, find the errors L(7;) + AC(Ty) for k=1,... K
where L is the error and C is a complexity measure (number of leafs)

4: Select the subtree s.t. L(7x) + AC(7x) is minimum
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Making new predictions

A new observation, Xpew

e is assigned to a leaf (straightforward);
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Making new predictions

A new observation, Xpew

e is assigned to a leaf (straightforward);
o the corresponding predicted Jnew is

e if Y is numeric, the mean value of the observations (training set)
assigned to the same leaf;
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Making new predictions

A new observation, Xpew
e is assigned to a leaf (straightforward);
o the corresponding predicted Jnew is
e if Y is numeric, the mean value of the observations (training set)
assigned to the same leaf;
e if Y is a factor, the majority class of the observations (training set)
assigned to the same leaf.

Formation INRA (Niveau 3) Nathalie Villa-Vialaneix 30 / 37
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N Overview
Advantages/Drawbacks

Random Forest: introduced by [Breiman, 2001].
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N Overview
Advantages/Drawbacks

Random Forest: introduced by [Breiman, 2001].
Advantages

e classification OR regression (i.e., Y can be a numeric variable or a
factor);

e non parametric method (no prior assumption needed) and accurate;

e can deal with a large number of input variables, either numeric
variables or factors;

e can deal with small samples.
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N Overview
Advantages/Drawbacks

Random Forest: introduced by [Breiman, 2001].
Advantages

e classification OR regression (i.e., Y can be a numeric variable or a
factor);

e non parametric method (no prior assumption needed) and accurate;

e can deal with a large number of input variables, either numeric
variables or factors;

e can deal with small samples.
Drawbacks
e black box model;

e is not supported by strong mathematical results (consistency...)
until now.
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Basic description

A fact: When the sample size is small, you might be unable to estimate
properly.
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Basic description

A fact: When the sample size is small, you might be unable to estimate
properly.

This issue is commonly tackled by bootstrapping and, more specifically,
bagging (Boostrap Aggregating).

e Bagging: combination of simple (and underefficient) regression (or
classification) functions;
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Basic description

A fact: When the sample size is small, you might be unable to estimate
properly.

This issue is commonly tackled by bootstrapping and, more specifically,
bagging (Boostrap Aggregating).

e Bagging: combination of simple (and underefficient) regression (or
classification) functions;

e Random forest ~ CART bagging.
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Bootstrap

Bootstrap sample: random sampling (with replacement) of the training
dataset.
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Bootstrap

Bootstrap sample: random sampling (with replacement) of the training
dataset.

Standard bootstrap sample size: 2/3n.
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Bootstrap

Bootstrap sample: random sampling (with replacement) of the training
dataset.

Standard bootstrap sample size: 2/3n.

General (and robust) approach to solve several problems:

e Estimating confidence intervals (of X with no prior assumption on
the distribution of X)
@ Build P bootstrap samples from (x;);
@ Use them to estimate X P times

© The confidence interval is based on the percentiles of the empirical
distribution of X
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Bootstrap

Bootstrap sample: random sampling (with replacement) of the training
dataset.

Standard bootstrap sample size: 2/3n.

General (and robust) approach to solve several problems:
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Bootstrap
Bootstrap sample: random sampling (with replacement) of the training
dataset.
Standard bootstrap sample size: 2/3n.
General (and robust) approach to solve several problems:
o Estimating confidence intervals (of X with no prior assumption on
the distribution of X)

Bootstrap distribution
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Bootstrap

Bootstrap sample: random sampling (with replacement) of the training
dataset.

Standard bootstrap sample size: 2/3n.

General (and robust) approach to solve several problems:

o Estimating confidence intervals (of X with no prior assumption on
the distribution of X)

e Also useful to estimate p-values, residuals, ...

Formation INRA (Niveau 3)

Nathalie Villa-Vialaneix 34 / 37



N Dootstrap/Bagging
Bagging

Average the estimates of the regression (or the classification) function
obtained from B bootstrap samples.
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N Dootstrap/Bagging
Bagging

Average the estimates of the regression (or the classification) function
obtained from B bootstrap samples.

Bagging with regression trees

1: forb=1,...,Bdo

2:  Construct a bootstrap sample &,
3:  Train a regression tree from &p, QASb
4: end for

5: Estimate the regression function by

. 1 &
¢"(x) = 5 ;%(X)-
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N Dootstrap/Bagging
Bagging

Average the estimates of the regression (or the classification) function
obtained from B bootstrap samples.

Bagging with regression trees

1: forb=1,...,Bdo

2:  Construct a bootstrap sample &,
3:  Train a regression tree from &p, (/A)b
4: end for

5: Estimate the regression function by

. 1 &
¢"(x) = 5 ;%(X)-

Formation INRA (Niveau 3)



Random forests

CART bagging with additional disturbances

® each node is based on a random (and different) subset of ¢
variables (an advisable choice for g is ,/p for classification and p/3
for regression).
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Random forests

CART bagging with additional disturbances

® each node is based on a random (and different) subset of ¢
variables (an advisable choice for g is ,/p for classification and p/3
for regression).

@ the tree is restricted to the first / nodes with / small.
Hyperparameters
e those of the CART algorithm;

e those that are specific to the random forest: ¢, bootstrap sample size,
number of trees.
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Random forests

CART bagging with additional disturbances

® each node is based on a random (and different) subset of ¢

variables (an advisable choice for g is ,/p for classification and p/3
for regression).

@ the tree is restricted to the first / nodes with / small.
Hyperparameters
e those of the CART algorithm;

e those that are specific to the random forest: ¢, bootstrap sample size,
number of trees.

Random forest are not very sensitive to hyper-parameters setting: default
values for g and bootstrap sample size (2n/3) should work in most cases.
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Additional tools

e OOB (Out-Of Bags) error: error based on the observations not
included in the “bag”

Formation INRA (Niveau 3) Nathalie Villa-Vialaneix 37 /37



Additional tools

e OOB (Out-Of Bags) error: error based on the observations not
included in the “bag”
Stabilization of OOB error is a good indication that there is enough
trees in the forest

1
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Additional tools

e OOB (Out-Of Bags) error: error based on the observations not
included in the “bag”
e Importance of a variable to help interpretation: for a given variable
XJ
1: randomize the values of the variable
2: make predictions from this new dataset
3: the importance is the mean decrease in accuracy (MSE or
misclassification rate)

0.0015
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