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Abstract

Motivation: The development of high-throughput sequencing enabled the massive production of “omics”

data for various applications in biology. By analyzing simultaneously paired datasets collected on the same

samples, integrative statistical approaches allow researchers to get a global picture of such systems and to

highlight existing relationships between various molecular types and levels. Here, we introduce NMFProfiler,

an integrative supervised NMF that accounts for the stratification of samples into groups of biological interest.

Results: NMFProfiler was shown to successfully extract signatures characterizing groups with performances

comparable to or better than state-of-the-art approaches. In particular, NMFProfiler was used in a clinical

study on Atopic Dermatitis (AD) and to analyze a multi-omic cancer dataset. In the first case, it successfully

identified signatures combining known AD protein biomarkers and novel transcriptomic biomarkers. In

addition, it was also able to extract signatures significantly associated to cancer survival.

Availability: NMFProfiler is released as a Python package, NMFProfiler (v0.3.0), available on PyPI.

Contact: aurelie.mercadie@inrae.fr

Supplementary information: Supplementary Table S1 and Supplementary material are available at

Bioinformatics online.
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1. Introduction

The development of high-throughput sequencing enabled the

massive production of “omics” data, for various applications in

biology. Generally collected on a same set of samples, each

omic illustrates a reduced part of the overall functioning of

complex biological systems. By simultaneously analyzing these

datasets, integrative statistical approaches allow researchers to

get a global picture of such systems and to highlight existing

relationships between various molecular types and levels. On the

one hand, integrative exploratory approaches, called unsupervised

methods (Meng et al., 2016; Eicher et al., 2020), identify possible

interactions between omics. On the other hand, predictive

approaches, called supervised methods (Ritchie et al., 2015;

Eicher et al., 2020), leverage molecular interactions to predict a

phenotype of interest. Here, we tackle both problems at the same

time: interactions between omics are analyzed to extract typical

signatures made of interacting biomarkers, while simultaneously

explaining a given stratification of the samples into “groups”. This

stratification can correspond e.g., to a clinical characteristic of

samples that is of biological importance and signatures would thus

inform on the specific functioning, at different omics levels, of the

groups.

This “mixed problem” (also known as “joint association and

classification problem”), has been much less studied in the

literature than the supervised and unsupervised settings. A

majority of the approaches tackling this issue are based on

Canonical Correlation Analysis (CCA) (Witten and Tibshirani,

2009; Singh et al., 2019; Moon et al., 2022; Safo et al., 2022; Zhang
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and Gaynanova, 2022). For example, DIABLO (Singh et al., 2019)

is based on the sparse Generalized CCA (sGCCA) (Tenenhaus

et al., 2014) and seeks projections maximizing a criterion of

covariance between omics pairs and clinical data. JACA and SIDA

(Safo et al., 2022; Zhang and Gaynanova, 2022) mix CCA and

Linear Discriminant Analysis (LDA) in order to find correlated

omics that discriminate well a phenotype. Closely related to

this framework, SDGCCA (Moon et al., 2022) is a non-linear

variant of sGCCA based on deep neural networks but, due to

its deep learning ground, it might be not adapted to small-size

samples, frequent in clinical studies. Lastly, Ding et al. (2022)

introduced an approach called cooperative learning that is more

oriented toward the prediction quality of both omics independently

but that nevertheless includes a term enforcing the omics-specific

predictions to agree.

The Non-negative Matrix Factorization (NMF) is a well-known

dimension reduction method introduced by Lee and Seung (1999).

This method was developed to analyze non-negative data and

is thus well adapted to most omics datasets (e.g., count data

from sequencing techniques as transcriptomics or metagenomics;

compositional data as for metabolomics or proteomics; etc).

The non-negativity of the solution has appealing interpretability,

compared to Partial Least Squares regression (PLS) or factorial

analysis. Hence, some recent variants have been designed to

analyze omics or biological data for unsupervised (Zhang et al.,

2011; Yang and Michailidis, 2016; Chalise and Fridley, 2017;

Moon and Lee, 2021; Pierre-Jean et al., 2021) or (semi-)supervised

(Gaujoux and Seoighe, 2012; Cai et al., 2017; Chao et al., 2018;

Leuschner et al., 2019) problems. However, even though both

supervised and integrative NMF have shown their ability to

successfully solve unsupervised or supervised problems in biology

(Rappoport and Shamir, 2018; Chauvel et al., 2020; Pierre-Jean

et al., 2020; Cantini et al., 2021), to the best of our knowledge,

they have never been combined to address mixed problems.

Here, we introduce NMFProfiler, a mixed integrative NMF.

NMFProfiler combines ideas from integrative and supervised NMF

but is based on a novel supervised term that is more adapted

to the non-negative setting of the NMF than the one proposed

in previous supervised NMF (Leuschner et al., 2019). A new

proximal optimization approach is also proposed to get exact

sparsity in obtained signatures. Its relevance is illustrated on

simulated dataset, a TCGA dataset and on a clinical study of

Atopic Dermatitis (AD).

2. Material and methods

In the following, we consider J omics datasets, X(j) ∈ Rn×pj

+ (j ∈
[1, . . . , J ]). Omics are both measured on the same n samples but by

different types of features (pj features respectively). In addition,

samples are known to belong to one of two groups, identified by a

binary vector y ∈ {0, 1}n (or by its one-hot encoding form Y ∈
{0, 1}n×2). Note that, for the sake of clarity, the presentation of

the method is done for U = 2 groups but its extension to more

than two groups is straightforward and briefly discussed at the end

of Section 2.2.

2.1. Standard NMF and existing extensions

First consider a single matrix X ∈ Rn×p
+ , in which the number

of features can be much larger than the sample size (n ≪
p). The NMF (Lee and Seung, 1999) produces a low rank

approximation of X, in which X is decomposed into two non-

negative matrices X ≃ WH, with W ∈ Rn×K
+ , H ∈ RK×p

+ ,

where K is the chosen number of signatures. Given K, both W

(“contribution matrix”) and H (“signature matrix”) are obtained

by solving a minimization problem that measures the quality of

the approximation

argmin
W,H≥0

L(X,WH), (1)

where the loss function L is generally taken as ∥X−WH∥2F .

Extension of NMF for classification problems (supervised NMF

“FR-lda”). When a binary vector y ∈ {0, 1}n characterizes groups

of individuals, the supervised NMF of Fernsel and Maass (2018)

proposes to add a second loss term to the reconstruction loss of

Equation (1). This loss uses the projection of the original data

onto the signature matrix, H, as a predictor in a linear regression

setting and leads to solving this minimization problem:

argmin
W,H,β≥0

L(X,WH) +
γ

2

∥∥y −XH⊤β
∥∥2

2
, (2)

where β ∈ RK
+ corresponds to LDA-like regression coefficients and

γ ≥ 0 controls the tradeoff between the reconstruction loss and

the supervised loss. The authors called the approach the “FR-lda”

variant of the NMF.

This first method was later improved for better interpretability

by Leuschner et al. (2019) who introduced a ℓ1- and ℓ2-

regularized version of Problem (2): argminW,H,β≥0 L(X,WH)+
γ

2

∥∥y −XH⊤β
∥∥2

2
+λ∥H∥1+

µ

2
∥W∥2F +

ν

2
∥H∥2F , where λ, µ, ν > 0

are given regularization hyperparameters. The ℓ1-regularization

term ensures the sparsity of obtained signatures and ℓ2 penalties

aim to improve the identifiability of the decomposition.

Extension of NMF to multi-table problems. Zhang et al.

(2012) extended the NMF to integrate all sources of information

in a joint NMF (jNMF). In this method, table-specific

dictionaries, or signatures, H(j) are obtained but forced

to describe a common sample contribution matrix W:

argminW,H(1),...,H(J)≥0

∑J
j=1

∥∥X(j) −WH(j)
∥∥2

F
.

2.2. NMFProfiler: a mixed integrative NMF

Here, we propose a new NMF variant combining the advantages of

the supervised NMF and of jNMF that we name “NMFProfiler”.

As in jNMF, W contains the common contributions of individuals

to the omic-specific dictionaries, or signatures, H(j), which are

each driven to discriminate one of the groups by a LDA-type loss.

However, our proposal is not a direct plug-in of the LDA-criterion

of the supervised FR-lda into jNMF. Instead, we derive a criterion

equivalent to K independent linear regressions, one for each group

(so, here K = 2). Details on the differences between the LDA

term of the supervised FR-lda of Fernsel and Maass (2018) and

our criterion are given in Section S1 of Supplementary material.

NMFProfiler is set to solve the following optimization problem:

argmin
W,H(1),...,H(J),β(1),...,β(J)≥0

F
(
W, {H(j)}Jj=1, {β(j)}Jj=1

)
, (3)
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where F
(
W, {H(j)}Jj=1, {β(j)}Jj=1

)
is equal to

1

2

J∑
j=1

∥∥∥X(j) −WH(j)
∥∥∥2

F
+

γ

2

J∑
j=1

∥∥∥Y −X(j)H(j)⊤Diag
(
β(j)

)∥∥∥2

F

+
J∑

j=1

λ
∥∥∥H(j)

∥∥∥
1
+

µ

2
∥W∥2F

(4)

with Diag
(
β(j)

)
, the 2× 2 diagonal matrix with diagonal entries

equal to β(j) ∈ R2
+. jNMF is a specific instance of this problem

that corresponds to the case γ = λ = µ = 0.

The criterion of Equation (4) can be extended in a trivial

way to more than two groups: For U groups, K = U signatures

are extracted and the regression part of the loss (the second

term) is modified into a multivariate regression problem with K

dimensions.

2.3. Solving the optimization problem

The optimization problems of NMF are described as “ill-posed,

non-linear and non-convex” (Fernsel and Maass, 2018) because

F is not simultaneously convex in W, H(j), and β(j). However,

they can be written as separate convex optimization problems in

each feature, one of them including a non-smooth constraint. This

is solved using alternating algorithms using a gradient descent

approach. Fernsel and Maass (2018) describe updates of W, H(j),

and β(j) leading to Multiplicative Updates (MU), which ensure

positivity of the estimated matrices.

We introduce a new optimization of Equation (3) that yields

exact (and not approximate) sparsity on H(j) by a proximal

approach (NMFProfiler-prox) contrary to MU updates. Details

on this proximal optimization are described in Section S2 of

the Supplementary material. Both variants are implemented

in the Python package NMFProfiler (v0.3.0) available from

PyPI https://pypi.org/project/NMFProfiler. The source code

of the package is available at https://forgemia.inra.fr/

omics-integration/nmfprofiler.

2.4. Simulated datasets

NMFProfiler was first evaluated using J = 2 simulated datasets.

We used the same data generation process than the one described

in Yang and Michailidis (2016)1 because these data had previously

also been used to test the integrative NMF approach (iNMF) of

Yang and Michailidis (2016) as well as to assess the relevance

of unsupervised multi-omics methods to cluster samples in the

benchmark article of Chauvel et al. (2020).

To generate simulated data with a clear ground truth, binary

matrices stratified by groups, W and H(j) (∀j ∈ {1, 2}), were first

generated from K = 2 signatures for each omic and used (together

with different types of noise ϵ) to generate data matrices X(j). A

realistic batch noise was also introduced using two datasets (X̃(j))

simulated independently and similarly but stratified by another

type of group (called “batch” effect) independent of the “true”

group structure of W and H(j). The final dataset was obtained

as the concatenation of the columns of the two datasets. Figure 1

illustrates the data generation process and details of this process

are provided in Section S3.1 of Supplementary material.

1 scripts are available at https://github.com/yangzi4/iNMF/

tree/master

Fig. 1: Data generation model for “Simulated datasets”. Colored

blocks contain positive values. White blocks contain null values.

ω (resp. ϕ) controls the number of noisy features inserted in Ĥ(j)

matrices for “group” (resp. H̃(j) matrices for “batch”). ϵ() and ϵ̃()

are processes introducing noise. Some parameters are fixed in all

simulations: n = 50, p1 = 2500, p2 = 400, and K = 2.

The flexible framework of this data generation procedure

allowed us to vary different parameters of the simulations (e.g.

number of features not selected in either of the K = 2 signatures

from the true group structure or the batch effect) but the results

presented in this article mainly corresponds to one simulation with

n1 = n2 = n/2, p̂1 = p̃1 = p1/2, p̂2 = p̃2 = p2/2, ω = ϕ = 0,

all features corresponding to a group or batch signature and with

a larger variance for the “true” group datasets. An example of

obtained datasets is given in Figure S3 of the Supplementary

material. The other tested simulation designs are described in

Section S3.1 of Supplementary material and exhaustive results are

available in Sections S5.1.1-S5.1.5 of Supplementary material.

2.5. TCGA

Similarly to ideas presented in Rappoport and Shamir (2018)

and Cantini et al. (2021), we also evaluated NMFProfiler on

TCGA multi-omics data. More precisely, we obtained three

omics for colon adenocarcinoma (COAD) (gene expression, DNA

methylation, and miRNA expression), measured for n = 221

samples.

We evaluated NMFProfiler ability to integrate more than two

omics in association with clinical labels with more than two

levels (groups) previously used in Rappoport and Shamir (2018):

pathologic T, pathologic M, pathologic N (respectively measuring

the progression of the tumor, metastases, and cancer in lymph

nodes and noted T, M, and N respectively). Clinical labels were

recoded in three groups (respectively, {T2, T3, T4}, {M0, M1,

MX} and {N0, N1, N2}) and subsets of the original dataset

corresponding to binary contrasts of these variables (respectively,

T2vsT3, T2vsT4, M0vsM1, M0vsMX, N0vsN1, and N0vsN2) were

also considered, for the sake of comparison with DIABLO. Further

information on data preprocessing is described in Section S3.2 of

Supplementary material.

https://pypi.org/project/NMFProfiler
https://forgemia.inra.fr/omics-integration/nmfprofiler
https://forgemia.inra.fr/omics-integration/nmfprofiler
https://github.com/yangzi4/iNMF/tree/master
https://github.com/yangzi4/iNMF/tree/master
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2.6. Proteomic and transcriptomic study on Atopic Dermatitis

NMFProfiler was also used on transcriptomic (microarray) and

proteomic (LCMS) data obtained from a study on AD in

non-lesional skin. AD is a common inflammatory skin disease,

characterized mainly by an impaired-skin barrier function.

Impairment of skin barrier function is responsible for increased

penetration of environmental allergens into the skin and initiates

immunological response and inflammation. Lesional AD skin

has been investigated in several studies using transcriptomic or

proteomic approaches (Ghosh et al., 2015; Sakabe et al., 2014;

Cole et al., 2014), but it is less the case for non lesional AD skin.

Both datasets were obtained on n = 12 volunteers, comprising

five AD subjects and seven healthy volunteers. Suction blisters

were sampled from these subjects’ interior forearms. Further

information on data, including preprocessing steps, is described

in Section S3.2 of Supplementary material. The final obtained

datasets contained p1 = 1, 847 probeset genes and p2 = 281

proteins.

2.7. Comparison with other integrative approaches

To assess the relevance of NMFProfiler, we compared both versions

(NMFProfiler-MU and NMFProfiler-prox) with other state-of-the-

art methods for omics data integration:

• jNMF (Zhang et al., 2012): We used our implementation to

perform jNMF, simply setting γ of Equation (4) to 0 2. The

two solvers (MU or proximal) led to two different variants:

jNMF-MU and jNMF-prox;

• DIABLO (Singh et al., 2019): We used the R package mixOmics

(v6.20.0) that builds on sGCCA (Tenenhaus et al., 2014). We

used both the sparse and non sparse versions of the method:

DIABLO and DIABLO-nonsparse;

• MOFA (Argelaguet et al., 2018): We used the R package

MOFA2 (v1.6.0).

jNMF and MOFA were only assessed on simulated datasets and

real-case studies (TCGA-COAD and AD) focused on the two most

efficient methods, DIABLO and NMFProfiler.

In all methods, we selected a number of signatures K

corresponding to the number of groups of individuals: K = 2

or K > 2 for NMF variants and K = 1 for DIABLO variants

and MOFA, split in two based on signs. For U = K =

2, relations between signatures and groups were automatically

derived from the average of estimated W by groups (NMF) or

similarly from the variate matrix (other methods). For cases

with more than two groups (in TCGA-COAD), relations between

signatures and groups were obtained similarly for NMF but can

not be obtained for DIABLO methods. Indeed, DIABLO extracts

loadings that characterize all groups simultaneously and there is

no simple automatic method to partition K global loadings into

U (U > 2) group-specific signatures, whatever the number K.

Hence, for TCGA-COAD, DIABLO was only trained for cases

where the number of groups was exactly equal to two. Further

information on method implementation are provided in Section

S4 of Supplementary material.

Methods were compared using different quality criteria. We

evaluated their ability to recover correct signatures composition

when a ground truth was available (e.g., on simulated data)

2 This actually corresponds to a ℓ2-regularized version of the
original jNMF approach.

using the rank of features correctly / incorrectly included in the

signatures with Receiver Operating Characteristic (ROC) curves

and the Area Under this curve (AUROC). We evaluated their

ability to provide signatures predictive of the groups by performing

a logistic regression of y onto X(j)(Ĥ(j))⊤ with a 5-fold CV

estimation of the classification accuracy and of the McFadden

index (also called pseudo-R2). We evaluated the exact sparsity

of signatures (for sparse methods). The stability of obtained

conclusions was assessed by repeating the simulation process 50

times. Finally, similarly to Cantini et al. (2021), in TCGA-

COAD, we evaluated the predictive power of signatures for survival

prediction. In each of the group, we fitted a Cox proportional

hazard regression with the projection of samples onto signatures

as predictors and assessed the significance of the model as well as

that of each of the omic signature.

3. Results

3.1. Simulated data

3.1.1. Method comparison

Methods were first compared on the simulated data as generated

by simulation settings described in Section 2.3. We started

by assessing their ability to retrieve the ground truth features

characteristic of each group. Based on feature ranking of each

method, ROC curves were obtained. Figure 2 and Table 1

respectively give the median ROC curve (with a ribbon indicating

the range of the ROC curves), the average area under the

ROC curve of each method, and its standard deviation (sd)

over the 50 simulations. As expected, results indicate that

supervised methods (DIABLO and NMFProfiler) had better

performances than unsupervised methods (jNMF and MOFA).

Indeed, unsupervised methods extract information related to the

main source of variability, which works well if the variability is well

explained by the group but fails when external covariates (here,

the batch features) are the main drivers of the variability.

Among supervised methods, NMFProfiler-MU systematically

had the highest average AUROC, while the non-sparse version of

DIABLO had very poor results. DIABLO thus seemed to be very

sensitive to the proper setting of the number of selected features,

which was done with a meticulous tuning for the sparse version,

but at the cost of a large increase of computational time (10

seconds for NFMProfiler-prox on average versus 680 seconds for

DIABLO; see Figure S12 of Supplementary material). Finally, the

proximal version of NMFProfiler gave slightly lower performances

than the MU version: The better interpretability of the proximal

version comes at the cost of a slightly deteriorated prediction

ability (see also individual ROC curves of the 50 simulations in

Figures S4-S6 of Supplementary material and the discussion of

Section 3.1.3 below).

We then evaluated the ability of the methods to provide

signatures predictive of the groups by performing a logistic

regression of y onto X(j)(Ĥ(j))⊤. Here, we focused only on the

most effective supervised methods, DIABLO, NMFProfiler-prox,

and NMFProfiler-MU. Mean accuracy and McFadden index were

computed using a 5-fold CV. Overall, results showed that

DIABLO and NMFProfiler-prox, which produce direct sparse

signatures, had an higher explanatory power and accuracy when

classifying samples than NMFProfiler-MU (Figures S10-S11 of

Supplementary material), with a slight advantage for DIABLO

on the accuracy.
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j u
AUROC

jNMF MOFA DIABLO NMFProfiler

MU prox nonsparse nonsparse sparse MU (nonsparse) prox (sparse)

1 1 0.541 (0.074) 0.647 (0.115) 0.720 (0.096) 0.675 (0.010) 0.974 (0.062) 0.990 (0.005) 0.946 (0.048)
1 2 0.538 (0.063) 0.640 (0.111) 0.712 (0.092) 0.673 (0.006) 0.978 (0.044) 0.990 (0.004) 0.942 (0.059)

2 1 0.543 (0.074) 0.650 (0.106) 0.721 (0.095) 0.673 (0.007) 0.971 (0.064) 0.991 (0.008) 0.985 (0.021)

2 2 0.543 (0.064) 0.648 (0.101) 0.712 (0.088) 0.671 (0.005) 0.974 (0.047) 0.991 (0.008) 0.987 (0.010)

Table 1. Simulated dataset. Mean (sd) AUROCs. j ∈ {1, 2} stands for the OMIC / dataset number and u for the group number.

Fig. 2: Simulated dataset. Median ROCs for all methods. The

ribbon corresponds to interquartile range over the 50 simulations.

The dashed line corresponds to the ROC of a random classifier.

We also assessed the influence of the batch pattern size, the

level of noisy features inside datasets or even group disequilibrium

on all methods (see Table S1 of Supplementary material for a

complete description of all setting variations). Results for these

variants are available in Sections S5.1 and S5.2 of Supplementary

material. In these simulations, unsupervised methods and

DIABLO-nonsparse showed a diminished ability to select relevant

features as the proportion of batch features inside data increases.

NMFProfiler-prox was found sensitive to high levels of noise or

to large numbers of irrelevant features, which was not the case

for DIABLO variants, and to a lesser extent NMFProfiler-MU. In

addition, NMFProfiler variants and DIABLO showed robustness

against unbalanced group samples, with a slight advantage to

DIABLO in cases where there is no batch feature.

3.1.2. Impact of the new supervised term

To assess the relevance of using the supervised term of

Equation (4) instead of the original LDA-term of Leuschner et al.

(2019), we also compared both versions of the supervised NMF

on the same simulated dataset. Figure 3 shows the median ROC

curves of the MU and sparse versions of NMFProfiler and FR-

lda. In this simulation setting, FR-lda failed to properly use

the supervised term to select relevant features and had results

comparable to the unsupervised methods jNMF-prox and MOFA.

In other simulations with no batch noise (e.g., simulation setting

n°05 in Table S1), NMFProfiler and FR-lda displayed similar

performances (see Figure S18) because, similarly to unsupervised

Fig. 3: Simulated datasets. Median ROCs for variants of the

supervised term in supervised NMF. The ribbon corresponds

to interquartile range over the 50 simulations. The dashed line

corresponds to the ROC of a random classifier.

methods, the FR-lda version is able to extract the main source of

variability (which, in this case, is the group).

3.1.3. Assessment of the sparsity level

Another important aspect of the methods is their ability to

select true features in a clear and automatic way and thus

to ease result interpretation. Figures S7-S8 of Supplementary

material display the specificity (proportion of predicted true zeros

among ground truth irrelevant features) of the NMFProfiler and

DIABLO variants, respectively. Note that, contrary to ROC

curves displayed in previous section, these values correspond to

the direct output of the method, without additional thresholding.

In addition, sensitivity was displayed separately for DIABLO

and NMFProfiler variants because their values are not directly

comparable. A signature in NMFProfiler is specific of one

group, while a loading in DIABLO is describing the two groups

simultaneously. Hence, the number of ground truth irrelevant

features is higher for NMFProfiler than for DIABLO (because,

for a given signature, it includes the features relevant for the other

group) and the sensitivity is thus expected to be smaller by design.

As expected, only NMFProfiler-prox and DIABLO have exact

sparsity and thus positive specificity. Levels of specificity were

good, even though higher for the first dataset (with more features),

and higher for DIABLO. More directly comparing the signature

coefficients obtained by NMFProfiler-prox and NMFProfiler-MU,

we also found that NMFProfiler-prox predicted higher coefficients

for relevant features (Figure S9 of Supplementary material)
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Fig. 4: TCGA-COAD. Left: Projection of samples onto signatures obtained for N0vsN1 for each omic and method. For DIABLO,

only the x-axis (first signature) is relevant (split based on sign). Right: − log10(p-values) obtained with Cox proportional hazard models

for the association of survival to both N0vsN1 and N0vsN2 signatures obtained by DIABLO and NMFProfiler. The full (versus null)

model p-value is displayed in red and the three p-values corresponding to an omic-specific signature are displayed in black. The dashed

horizontal line corresponds to a p-value of 0.05.

and that it generally automatically obtained the sparsity

level maximizing the true positive rate (TPR) (Figure S6 of

Supplementary material).

3.2. NMFProfiler extracts signatures predictive of survival

Results are described only for groups designed as N0vsN1, N0vsN2

and N, corresponding to three types of recoding of pathologic N

(the first two are binary recoding and the other is a recoding in

three groups, only used with NMFProfiler). The other results are

provided in Section S5.3 of Supplementary material.

Figure 4 (left) displays the projection of samples onto

signatures obtained with NMFProfiler-MU and DIABLO for

N0vsN1. In this plot, NMFProfiler shows a much better ability

than DIABLO to separate the two groups, especially for gene

expression and DNA methylation. Similar results were obtained

with groups coming from the other clinical features.

Figure 4 (right) shows the predictive significance of selected

features (in terms of − log10 p-value) in survival prediction within

groups (Cox proportional hazard regression). NMFProfiler was

able to select signatures significantly associated with survival (one

for N, with also one global model significantly associated to the

survival, one for N0vsN1 and one global model also significantly

associated for N0vsN2). In contrast, none of the signature selected

by DIABLO was found significantly associated with survival in any

of the groups. This result shows the relevance of our approach since

finding signatures predictive of survival for colon adenocarcinoma

has previously been reported to be rare and difficult in this cancer

type (Rappoport and Shamir, 2018; Cantini et al., 2021). Note

that a similar result was also obtained for groups derived from

pathologic M.

3.3. NMFProfiler successfully identifies molecular signatures of

Atopic Dermatitis

NMFProfiler-prox was used to extract molecular (genes and

proteins) signatures of subjects with or without AD. Obtained

signatures were sparse: 16 genes were selected from the

transcriptomics dataset (over the 1, 847 genes initially available)

and 96 proteins were selected from the proteomics dataset (over

the 281 proteins initially available). Figure 5 (top) displays the

positive coefficients of extracted features in both datasets for both

sample groups (healthy samples and non lesional AD samples) and

the same figure (bottom) displays the Pearson correlation heatmap

of selected features.

The molecular signatures of non lesional AD subjects

contained less features than the molecular signatures of healthy

subjects. This is consistent with the well known fact that AD

skin is characterized by down-regulation of genes / proteins

relative to the skin barrier structure. More precisely, extracted

signatures showed that the presence of Arginine and Filaggrin is

characteristic of healthy subjects and a complementary differential

analysis revealed that these proteins were indeed significantly

underexpressed for AD samples (adjusted p-values of 5.32× 10−7

and 6.96 × 10−4 respectively with moderated t-tests (limma);

see Supplementary Table S1 and Section S5.4 of Supplementary

material). Filaggrin, a skin barrier protein, is a well known

biomarker of the AD pathogenesis (Nakajima et al., 2024) and

Arginine is a protein known to be related to skin natural

moisturizing. Hence, decreasing levels of Filaggrin and Arginine

could reflect impaired skin barrier function, consistent with AD.

Moreover, the presence of SPRR1B, SPRR2E, FABP5 or even of

HSP90AB1 and HSPD1 proteins is known to be typical of non-

lesional AD skin. Indeed, small proline rich proteins (as SPRR1B,

SPRR2E), implied in keratinization process, and fatty acid binding

proteins (as FABP5), implied in fatty acid metabolism, were

found to be highly expressed in non lesional / lesional skin of

AD and psoriatic patients (Rusinol and Puig, 2024; Nakajima

et al., 2024). Heat shock proteins (as HSP90AB1, HSPD1)

play a role in inflammatory stress response, and when inhibited

attenuates inflammation on AD samples (Ben Abdallah et al.,

2023). Conclusions for selected genes are less clear but nine

out of the 16 selected genes were also found to be significantly

under/overexpressed by a differential analysis (moderated t-tests

from limma; see Supplementary Table S1).

Obtained signatures were compared with the single signature

extracted using DIABLO on the same dataset (see Supplementary

Section S5.4 for further details): DIABLO signature includes 200

genes and 10 proteins. All proteins found in DIABLO signatures

were also found by NMFProfiler and a majority of genes selected

by NMFProfiler were also found in DIABLO signature. Overall,

NMFProfiler is less influenced by unbalanced sizes between the two

datasets in its selection, while DIABLO tends to extract signatures

with sizes more influenced by the respective initial number of

features of the two omics. Also, as expected, DIABLO provides
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Fig. 5: Atopic Dermatitis. Top: Features selected by NMFProfiler-prox for both signatures (healthy: left; non lesional AD: right),

ordered by decreasing order of their coefficients in Ĥ(j). To ease readability, coefficients have been rescaled so that their maximum is

equal to 1. Bottom: Pearson correlation heatmap of selected features. Features are ordered identically in rows and columns, based on

the result of a hierarchical clustering (complete linkage) with Euclidean distance. Colors displayed for rows (resp. columns) correspond

to the molecular type (gene or protein) (resp. to the signature type: healthy or AD).

signatures with very strong correlations between features: In

particular, DIABLO gene signature has an average (absolute value

of) correlation equal to 0.682 while the (smaller) gene signatures

of NMFProfiler are less redundant, with an average absolute value

of correlations equal to 0.51. This is explained by the fact that

the objective function of DIABLO, based on covariance, favors

strong correlations between extracted features, while NMFProfiler

seeks good reconstruction and better benefit from the ℓ1 penalty to

extract non redundant features. The same remark holds for protein

signatures (average signature of 0.729 for DIABLO and of 0.369

for NMFProfiler) but this is a more expected result regarding the

number of proteins selected by each method.
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However, extracted signatures remain consistent: Figure 5

(bottom) confirms the existence of strong linear positive

associations within, respectively, healthy and AD signatures and

of negative associations between signatures. If the precise role

of some of the identified molecules is still to be confirmed,

NMFProfiler has been able to obtain results consistent with known

biomarkers and has extracted potential new biomarkers. Hence,

compared to standard analyses performed independently on each

gene or protein (like differential analysis), NMFProfiler provides

a complete signature of associated omics that potentially work

together. It has thus the ability to include features that classical

single-omic approaches would miss and to achieve a good tradeoff

between complementarity and consistency of the features included

in the signature.

4. Discussion and perspectives

We developed an extension of the NMF able to find multi-

omic signatures typical of groups of samples. The approach was

successfully tested on simulated and real data.

On simulated data, we showed that NMFProfiler was able

to retrieve a majority of the features characterizing groups

specifically, classified well samples and ran fast. We were able to

show that NMFProfiler compares similarly or favorably with state-

of-the-art methods for omics integration. The simulated study also

highlighted that the proximal solver that we proposed enables

the recovery of signatures that are directly sparse, which is an

advantage for the interpretation. However, this optimization solver

was also shown to be less robust as the noise level increases than

the more common MU solver. Both solvers are provided in our

implementation, that can be chosen depending on the level of noise

expected in the data.

NMFProfiler was able to extract relevant signatures in an AD

multi-omics study: In addition to known protein AD biomarkers, it

provided a list of new potential biomarker genes. In TCGA dataset

study, it also extracted relevant signatures, significantly associated

to survival, from groups based only on clinical information.

In terms of interpretability, NMFProfiler signatures are directly

specific of a single group. This provides an advantage compared

to other PCA- or CCA-like methods (e.g., DIABLO and

MOFA) where extracted loadings are supposed to characterize

simultaneously all groups. For PCA- and CCA-like methods, the

set of variables contributing to a loading are thus to be re-

interpreted a posteriori to obtain group-specific signatures: In the

case of two groups, this can be done using a split based on sign (as

we did) but for more than two groups, there is no straightforward

automatic manner to obtain omic-specific signatures. Finally, in

the two-group case, NMFProfiler also provides a slight additional

flexibility since it allows a given feature to be present in the

signature of several groups simultaneously (which can not be done

if signatures are built from sign based splits).

As other NMF-based methods, NMFProfiler only requires that

data are non-negative. This limitation has been leveraged in past

works on omics data (Kim and Tidor, 2003; Zhang et al., 2011) by

splitting the data into positive and negative components (using the

absolute value of the negative component as additional features).

However, the use of the square-loss in the objective function might

be subjected to limitations inherent to this specific loss and not

be well adapted to highly skewed data or data containing outliers.

Standard strategies (log-transformation or outlier detection and

removal) can address this limitation. An alternative specific to

NMF method is to replace the square-loss by the Kullback-Leibler

(KL) divergence, which also has well-established optimization

strategies based on specific surrogates (Fernsel and Maass, 2018).

While rarely tested for omics data, KL divergence has shown

superior performance for mass spectrometry imaging data, which

are distributed as Poisson (Nijs et al., 2021). Sequencing data have

similar distribution and could thus also benefit from using this loss.

In the results presented in the current article, hyperparameters,

and especially λ that controls the level of sparsity of the method,

are automatically set based on data basic characteristics. However,

additional simulations probing the influence of this parameter

seem to indicate that the results can be sensitive to the value

of this hyperparameter specifically. We noticed a similar situation

when using NMFProfiler-prox on TCGA data. Future work could

allow the automatic tuning of λ with a stability score (Liu

et al., 2010; Meinshausen and Bühlmann, 2010). However, these

approaches (or cross-validation strategy) would strongly increase

the computational time of the method. The current default

choice implemented in our package seems to provide a satisfactory

tradeoff between performance quality and computational time in

various cases.

Similarly, γ, which controls the tradeoff between reconstruction

quality and prediction quality, was also set to a default and

basic data driven value (as a rule-of-thumb, an appropriate

γ generally corresponds to a balanced contribution between

reconstruction and prediction errors). Again, if the obtained

results are already quite satisfactory, there might be room for

improvements for this hyperparameter. In particular, based on

previous remark, an adaptive strategy that would allow the

update of this parameter during the optimisation from observed

reconstruction and prediction errors could be an interesting idea

to explore.

Finally, NMFProfiler is currently restricted to extract one

signature per group and having more than one signature for a

given group might require additional efforts. In some cases, this

might be an interesting venue to pursue in order to identify,

e.g., different functional pathways in various signatures. Another

interesting development would be to allow for the current method

to incorporate prior knowledge (e.g., forcing a known biomarker

to be included in a signature). Very few works have addressed

similar issues in the NMF litterature so far: Tang et al. (2012)

have developped a variant of NMF where an entire signature

(or a few entire signatures) is known and passed in the method

to force the decomposition. Liu et al. (2012) have introduced

a hard constrained NMF to force identical weights in clusters

of individuals. The latter approach is based on a Lagrangian

reformulation of the objective function and could be a course of

action to incorporate various forms of prior knowledge in a flexible

way.
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related methods with practical implications for the analysis of

mass spectrometry imaging data. Rapid Communications in

Mass Spectrometry, 35(21):e9181, 2021. doi: 10.1002/rcm.9181.

M. Pierre-Jean, J.-F. Deleuze, E. Le Floch, and F. Mauger.

Clustering and variable selection evaluation of 13 unsupervised

methods for multi-omics data integration. Briefings in

Bioinformatics, 21(6):2011–2030, 2020. doi: 10.1093/bib/

bbz138.

M. Pierre-Jean, F. Mauger, J.-F. Deleuze, and E. Le Floch.

Pintmf: Penalized integrative matrix factorization method for

multi-omics data. Bioinformatics, 38(4):900–907, 2021. doi:

10.1093/bioinformatics/btab786.

N. Rappoport and R. Shamir. Multi-omic and multi-view

clustering algorithms: review and cancer benchmark. Nucleic

Acids Research, 46(20):10546–10562, 2018. doi: 10.1093/nar/

gky889.

M. D. Ritchie, E. R. Holzinger, R. Li, S. A. Pendergrass, and

D. Kim. Methods of integrating data to uncover genotype-

phenotype interactions. Nature Reviews Genetics, 16:85–97,

2015. doi: 10.1038/nrg3868.

L. Rusinol and L. Puig. Multi-Omics Approach to Improved

Diagnosis and Treatment of Atopic Dermatitis and Psoriasis.

International Journal of Molecular Sciences, 25(2):1042, 2024.

doi: 10.3390/ijms25021042.

S. E. Safo, E. J. Min, and L. Haine. Sparse linear discriminant

analysis for multiview structured data. Biometrics, 78(2):612–

623, 2022. doi: 10.1111/biom.13458.

J.-I. Sakabe, K. Kamiya, H. Yamaguchi, S. Ikeya, T. Suzuki,

M. Aoshima, K. Tatsuno, T. Fujiyama, M. Suzuki, T. Yatagai,

T. Ito, T. Ojima, and Y. Tokura. Proteome analysis of stratum

corneum from atopic dermatitis patients by hybrid quadrupole-

orbitrap mass spectrometer. The Journal of allergy and clinical

immunology, 134(4):957–60.e8, 2014. doi: 10.1016/j.jaci.2014.

07.054.

A. Singh, C. P. Shannon, B. Gautier, F. Rohart, M. Vacher, S. J.
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